首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we introduce a new continuous production technique of calcium alginate fibers with a microfluidic platform similar to a spider in nature. We have used a poly(dimethylsiloxane) (PDMS) microfluidic device embedded capillary glass pipet as the apparatus for fiber generation. As a sample flow, we introduced a sodium alginate solution, and, as a sheath flow, a CaCl2 solution was introduced. The coaxial flows were generated at the intersection of both flows, and the sodium alginate was solidified to calcium alginate by diffusion of the Ca2+ ions during traveling through the outlet pipet. The diameter changes in the sample and sheath flow variations were examined, and the size of alginate fibers was well regulated by changing both flow rates. In addition, we have measured the elasticity of dried fibers. We evaluated the potential use of alginate fibers as a cell carrier by loading human fibroblasts during the "on the fly" fabrication process. From the LIVE/DEAD assay, cells survived well during the fiber fabrication process. In addition, we evaluate the capability of loading the therapeutic materials onto the alginate fibers by immobilized bovine serum albumin-fluorescein isothiocyanate in the fibers.  相似文献   

2.
Recent developments of bottom-up fabrication based on self-assembly processes allow us to construct well-designed nano- and microstrctures such as spheres, fibers, tubes, and disks from various functional molecules including biopolymers, conjugated molecules, porphyrins, graphenes, and fullerenes. These assembling techniques do not always require traditional (hydrophilic/hydrophilic) amphiphilic structure. A wide range of functional molecules can be now applied for the fabrication of desired microstructures.  相似文献   

3.
A novel fabrication method of polymer tubes with simple operation process and high yield is presented. N,N′‐methylene bisacrylamide (MBA) polymer microtubes are fabricated via reversible addition–fragmentation chain transfer (RAFT) polymerization using MBA self‐assembled fibers as both the template and monomer source. The resulting products are characterized by SEM, TEM, FTIR, and element analysis. The mechanical properties of the gel‐like product and the MBA organogel are measured by rheometer. The morphology of the polymer tubes obtained via RAFT polymerization is compared with the sample obtained via conventional radical polymerization. Based on the current investigations, the fabrication mechanism of this method is initially proposed.  相似文献   

4.
Sol–gel-processed organic–inorganic hybrid materials combine the merits of inorganic glass and organic molecules, and are therefore a class of materials with good potential for photonics. In this review, two approaches which have shown promising results for producing useful materials for photonics are described: (i) a novel way to fabricate organically doped, multiphasic nanostructured composite monoliths and (ii) a method of fabrication of organically doped, sol–gel-derived optical fibers. For each approach, the preparation process is presented, together with selected applications such as multidye solid-state tunable laser, multiphasic optical power limiter, a micron-scale chemical-sensing and biosensing fibers and solid-state dye-doped fiber lasers. © 1997 by John Wiley & Sons Ltd.  相似文献   

5.
Constructing ingenious microstructures, such as core–shell, laminate, microcapsule and porous microstructures, is an efficient strategy for tuning the combustion behaviors and thermal stability of energetic materials (EMs). Electrohydrodynamic atomization (EHDA), which includes electrospray and electrospinning, is a facile and versatile technique that can be used to process bulk materials into particles, fibers, films and three-dimensional (3D) structures with nanoscale feature sizes. However, the application of EHDA in preparing EMs is still in its initial development. This review summarizes the progress of research on EMs prepared by EHDA over the last decade. The morphology and internal structure of the produced materials can be easily altered by varying the operation and precursor parameters. The prepared EMs composed of zero-dimensional (0D) particles, one-dimensional (1D) fibers and two-dimensional (2D) films possess precise microstructures with large surface areas, uniformly dispersed components and narrow size distributions and show superior energy release rates and combustion performances. We also explore the reasons why the fabrication of 3D EM structures by EHDA is still lacking. Finally, we discuss development challenges that impede this field from moving out of the laboratory and into practical application.  相似文献   

6.
In an effort to prepare electrically conductive nanofiber and nanotube materials, polypyrrole/poly(methyl methacrylate) coaxial fibers have been prepared using polymer fibers produced from an electrospinning process. Poly(methyl methacrylate) (PMMA) fibers with an average diameter of 230 nm were initially fabricated by electrospinning as core materials. The PMMA fibers were subsequently coated as templates with a thin layer of polypyrrole (PPy) by in-situ deposition of the conducting polymer from aqueous solution. Hollow PPy tubes were produced by dissolution of the PMMA core from PPy/PMMA coaxial fibers. High-temperature (1000 degrees C) treatment under inert atmosphere converted PPy/PMMA coaxial fibers into carbon tubes by complete decomposition of PMMA fiber core and carbonization of the PPy wall. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and FT-IR spectroscopy confirmed the formation of the PPy/PMMA coaxial fibers, PPy tubes, and carbon tubes.  相似文献   

7.
Liu AL  He FY  Wang K  Zhou T  Lu Y  Xia XH 《Lab on a chip》2005,5(9):974-978
We developed a facile and rapid one-step technique for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. A laser printing mechanism was dexterously adopted to pattern the microchannels with different gray levels using vector graphic software. With the present method, periodically ordered specific bas-relief microstructures can be easily fabricated on transparencies by a simple printing process. The size and shape of the resultant microstructures are determined by the gray level of the graphic software and the resolution of the laser printer. Patterns of specific bas-relief microstructures on the floor of a channel act as obstacles in the flow path for advection mixing, which can be used as efficient mixing elements. The mixing effect of the resultant micromixer in microfluidic devices was evaluated using CCD fluorescence spectroscopy. We found that the mixing performance depends strongly on the gray level values. Under optimal conditions, fast passive mixing with our periodic ordered patterns in microfluidic devices has been achieved at the very early stages of the laminar flow. In addition, fabrication of micromixers using the present versatile technique requires less than an hour. The present method is promising for fabrication of micromixers in microfluidic devices at low cost and without complicated devices and environment, providing a simple solution to mixing problems in the micro-total-analysis-systems field.  相似文献   

8.
We report the fabrication of a microfluidic apparatus and the realization of a sensors based on PEDOT : PSS, a biocompatible semiconductor polymer used in substitution of standard electrodes for electrophysiological studies and for detection of nanopores in membrane. This gives the possibility to study the mechanisms of ions balance and molecular transport though cell membranes. In particular the apparatus is based on two chambers connected through an aperture in a PTFE sheet where lipid bilayer are formed using Montal‐Mueller method, and the pore‐forming proteins activity is detected by polymeric electrodes. This methodology could be applied to examine different membrane proteins for the purpose of biosensing, drug screening and nanopore technologies.  相似文献   

9.
Near infrared (NIR) activable photopolymers suitable for versatile fabrication of micro-optical elements were developed. The first main objective of this article is to show that these new photopolymers can be used for microfabrication and investigate the parameters governing the microfabrication process. The impact of photonic, physico-chemical, and chemical parameters is discussed. High quality microstructures with a good control over their size and shape are demonstrated. The second main objective is to show practical examples of microlenses and waveguides implemented on single core and multiple core optical fibers, VCSELs, and glass slides are then presented. The NIR photosensitivity of this negative tone photoresists allows using the device source itself as to start the crosslinking process, which constitutes a convenient approach for micro-optics self-positioning on NIR sources and justifies the interest of such NIR photopolymer for the fabrication micro-optical elements and optical interconnects.  相似文献   

10.
A large number of microscale structures have been used to elaborate flowing control or complex biological and chemical reaction on microfluidic chips. However, it is still inconvenient to fabricate microstructures with different heights (or depths) on the same substrate. These kinds of microstructures can be fabricated by using the photolithography and wet-etching method step by step, but involves time-consuming design and fabrication process, as well as complicated alignment of different masters. In addition, few existing methods can be used to perform fabrication within enclosed microfluidic networks. It is also difficult to change or remove existing microstructures within these networks. In this study, a magnetic-beads-based approach is presented to build microstructures in enclosed microfluidic networks. Electromagnetic field generated by microfabricated conducting wires (coils) is used to manipulate and trap magnetic beads on the bottom surface of a microchannel. These trapped beads are accumulated to form a microscale pile with desired shape, which can adjust liquid flow, dock cells, modify surface, and do some other things as those fabricated microstructures. Once the electromagnetic field is changed, trapped beads may form new shapes or be removed by a liquid flow. Besides being used in microfabrication, this magnetic-beads-based method can be used for novel microfluidic manipulation. It has been validated by forming microscale dam structure for cell docking and modified surface for cell patterning, as well as guiding the growth of neurons.  相似文献   

11.
In this paper the fabrication and electrical characterization of a silicon microreactor for high-temperature catalytic gas phase reactions, like Rh-catalyzed catalytic partial oxidation of methane into synthesis gas, is presented. The microreactor, realized with micromachining technologies, contains silicon nitride tubes that are suspended in a flow channel. These tubes contain metal thin films that heat the gas mixture in the channel and sense its temperature. The metal patterns are defined by using the channel geometry as a shadow mask. Furthermore, a new method to obtain Pt thin films with good adhesive properties, also at elevated temperatures, without adhesion metal is implemented in the fabrication process. Based on different experiments, it is concluded that the electrical behaviour at high temperatures of Pt thin films without adhesion layer is better than that of Pt/Ta films. Furthermore, it is found that the temperature coefficient of resistance (TCR) and the resistivity of the thin films are stable for up to tens of hours when the temperature-range during operation of the microreactor is below the so-called "burn-in" temperature. Experiments showed that the presented suspended-tube microreactors with heaters and temperature sensors of Pt thin films can be operated safely and in a stable way at temperatures up to 700 degrees C for over 20 h. This type of microreactor solves the electrical breakdown problem that was previously reported by us in flat-membrane microreactors that were operated at temperatures above 600 degrees C.  相似文献   

12.
Combustion is often difficult to spatially direct or tune associated kinetics—hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A ‘surface-then-core’ order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non-flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside-out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm- and μm-diameter tubes from appropriately sized fibers.  相似文献   

13.
L-Valine-based oligopeptides with the general structure Z-(L-Val)(n)-OMe or -OH (n = 1-4) form stable organogels in a variety of solvents, including the inorganic liquid tetraethylorthosilicate. The acid form Z-(L-Val)(n)-OH is a less efficient gelator than the methyl ester, but forms stable organogels in aromatic solvents and di- and trichloromethane. In all cases the peptides form micrometer long helical fibers with a beta-sheet structure. IR and X-ray diffraction show that the peptides have closely related structures in the crystalline state and the fibers in the organogels. The gels are efficient templates for the fabrication of complex titania architectures on a (sub)micron length scale: at low peptide concentrations titania spheres form and at higher concentrations one-dimensional shapes like hollow titania tubes or titania fibers are observed. The tubes are stable towards calcination whereas the fibers (partially) transform into spherical or even bulk particles.  相似文献   

14.
It is promising that artificial tissues/organs for clinical application can be produced via 3D bioprinting of living cells and biomaterials. The construction of microstructures biomimicking native tissues is crucially important to create artificial tissues with biological functions. For instance, the fabrication of vessel‐like networks to supply cells with initial nutrient and oxygen, and the arrangement of multiple types of cells for creating lamellar/complex tissues through 3D bioprinting are widely reported. The current advances in 3D bioprinting of artificial tissues from the view of construction of biomimetic microstructures, especially the fabrication of lamellar, vascular, and complex structures are summarized. In the end, the conclusion and perspective of 3D bioprinting for clinical applications are elaborated.  相似文献   

15.
Y He  BL Huang  DX Lu  J Zhao  BB Xu  R Zhang  XF Lin  QD Chen  J Wang  YL Zhang  HB Sun 《Lab on a chip》2012,12(20):3866-3869
Reported here is the design and fabrication of three-dimensional (3D) "overpass" microstructures at the junction of crossed microfluidic channels by femtosecond laser direct writing of photopolymers. The post-integrated overpass could be used for guiding different microfluids across the junction without mixing; therefore it is proposed as an enabler for achieving 3D microfluidic chips based on conventional two-dimensional (2D) microchannels. As representative examples, bi-crossed and tri-crossed microchannels have been equipped with bi-connected and tri-connected overpasses, respectively. Flow tests confirm 3D flowing capability. The integration of such overpass structures at the microchannel junction provides an opportunity to impart 3D capability to conventional 2D microchips, thus the method may hold great promise for both functionalization and miniaturization of Lab-on-a-Chip systems.  相似文献   

16.
Polycrystalline halogen-bonded assemblies fabricated by physical vapor deposition (PVD) exhibit controllable morphologies and microstructures. Although the solid-state packing may vary going from a solution crystal growth process (used for chromophore single-crystal determination) to a vapor-phase deposition process (used for PVD film fabrication), the corresponding film microstructures are independent of the substrate surface chemistry.  相似文献   

17.
This article reviews recent advances and progress in developing electrochemical (EC) biosensing and logic biosensing systems based on self‐powered biofuel cells (BFCs). BFCs that exploit enzymes and microbes have attracted a considerable recent interest owing to their unique ability to provide sustainable energy from renewable fuel source under mild conditions. This review focuses on recently introduced novel concepts for using BFCs as the basic element for EC‐biosensing and especially EC‐logic biosensing applications. The fabrication and design of such self‐powered EC‐biosensing and EC‐logic biosensing are described along and different new approaches for BFCs‐based EC‐biosensing and EC‐logic biosensing involving substrate effects, inhibition effects, blocking effects and gene regulation effects. Latest advances in coupling a self‐powered diagnostic operation with logic‐activated drug release functionality are discussed. We conclude with the implications of the new self‐powered biosensing/logic‐biosensing platforms along with future prospects and challenges.  相似文献   

18.
Recent work on the fabrication of tubular microstructures via self‐rolling of thin, bilayer polymer films is reviewed. A bending moment in the films arises due to the swelling of one component of the bilayer in a selective solvent. The inner diameters of the tubes vary from hundreds of nanometers to dozens of micrometers. The position of the tubes on the substrate and their length can be preset by photolithographic patterning of the bilayer. Prior to rolling, the bilayers can be exposed to different methods of surface functionalization, providing opportunities for engineering the microtube inner surfaces for use in microfluidic circuits and “microbiological” applications. The self‐rolling approach is promising for the development of novel drug‐ and cell‐delivery systems, as well as for tissue engineering.  相似文献   

19.
Self-folding of three-dimensional hydrogel microstructures   总被引:1,自引:0,他引:1  
This letter describes the fabrication of three-dimensional particulate-like hydrogel microstructures using a combination of soft lithography and volume expansion induced self-folding. Bilayer structures are produced by solvent casting and photocuring of liquid resins. They curl into three-dimensional (3D) structures upon contacting with water due to differential swelling of the two layers. The curvature can be controlled by adjusting the polymer composition of the primary swelling layer. A simple semiempirical mathematical model is used to predict this self-folding behavior. By designing the two-dimensional (2D) shapes of the bilayers, this technique can lead to complicated 3D microstructures.  相似文献   

20.
We report on a fabrication of photonic crystal structures in organic-inorganic hybrid films by a laser interference technique. Films containing the methacrylic group, which is photopolymerable by an adequate laser light, are prepared using a sol-gel technique from a mixture of organosilicate alkoxide and zirconium alkoxide modified by methacrylic acid. For the photopolymerization, the coated films on glass substrate are exposed to the interference light which is arranged with a square lattice in about 1 m spacing. From microscopic images of microstructures produced by the photopolymerization, the influence of changes in conditions such as pre-bake temperature, photoinitiator and irradiation energy (laser power and duration time) on periodic structure is investigated. Adjusting the conditions, 2D and 3D photonic crystal structures with the micrometer-order period are formed in organo-silicate-zirconate hybrid materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号