首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman microspectroscopy is a non-destructive, label-free optical technique that offers information-rich molecular analysis of living cells. We report here the first Raman spectral study of human induced pluripotent stem cells (hiPSCs), and compare their Raman features to those of human embryonic stem cells (hESCs) and differentiated progeny of hESCs. Raman spectra from 687 cm(-1) to 1073 cm(-1) were collected from living hiPSCs, hESCs and hESCs non-specifically differentiated for 20 days. Spectra of hiPSCs and hESCs were found to be highly similar, and both were distinguishable from differentiated hESCs in terms of relative Raman peak intensities and variances. Principal component analysis (PCA) of the spectra demonstrated a clear discrimination between hiPSCs and differentiated hESCs. These results suggested that reprogramming returned human somatic cells to a state where the overall cellular composition was similar to that of human embryonic stem cells. Some metabolic differences between the two groups of pluripotent cells could be inferred, however it was unclear whether or not these differences were related to reprogramming.  相似文献   

2.
3.
4.
The regeneration of the injured nerve and recovery of its function have brought attention in the medical field. Electrical stimulation(ES) can enhance the cellular biological behavior and has been widely studied in the treatment of neurological diseases. Microfluidic technology can provide a cell culture platform with the well-controlled environment. Here a novel microfluidic/microelectrode composite microdevice was developed by embedding the microelectrodes to the microfluidic platform, in whic...  相似文献   

5.
The prevalence of dementia and other neurodegenerative diseases continues to rise as age demographics in the population shift, inspiring the development of long‐term tissue culture systems with which to study chronic brain disease. Here, it is investigated whether a 3D bioengineered neural tissue model derived from human induced pluripotent stem cells (hiPSCs) can remain stable and functional for multiple years in culture. Silk‐based scaffolds are seeded with neurons and glial cells derived from hiPSCs supplied by human donors who are either healthy or have been diagnosed with Alzheimer's disease. Cell retention and markers of stress remain stable for over 2 years. Diseased samples display decreased spontaneous electrical activity and a subset displays sporadic‐like indicators of increased pathological β‐amyloid and tau markers characteristic of Alzheimer's disease with concomitant increases in oxidative stress. It can be concluded that the long‐term stability of the platform is suited to study chronic brain disease including neurodegeneration.  相似文献   

6.
《中国化学快报》2022,33(10):4617-4622
Protein-based drugs have received extensive attention in the field of drug research in recent years. However, protein-based drug activity is difficult to maintain during oral delivery, which limits its application. This study developed bifunctional oral lipid polymer hybrid nanoparticles (R8-PEG-PPNPs) that deliver superoxide dismutase (SOD) for the treatment of ulcerative colitis (UC). R8-PEG-PPNPs was composed of PCADK, PLGA, lecithin, and co-modified with stearic acid-octa-arginine and polyethylene glycol. The nanoparticles (NPs) are uniformly dispersed with a complete spherical structure. In vitro stability and release studies showed that R8-PEG-PPNPs exhibited good stability and protection. In vitro cell culture experiments demonstrated that R8-PEG-PPNPs as carriers have no significant toxic effects on cells at concentration below 1000 µg/mL and promote cellular uptake. In experiments with ulcerative colitis mice, R8-PEG- PPNPs were able to enhance drug absorption by intestinal epithelial cells and accumulate effectively at the site of inflammation. Its therapeutic effect further demonstrates that R8-PEG-PPNPs are a promising delivery system for oral delivery of protein-based drugs.  相似文献   

7.
(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal—if not scientific or clinical—evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.  相似文献   

8.
Autoimmune diseases (AIDs), a heterogeneous group of immune-mediated disorders, are a major and growing health problem. Although AIDs are currently treated primarily with anti-inflammatory and immunosuppressive drugs, the use of stem cell transplantation in patients with AIDs is becoming increasingly common. However, stem cell transplantation therapy has limitations, including a shortage of available stem cells and immune rejection of cells from nonautologous sources. Induced pluripotent stem cell (iPSC) technology, which allows the generation of patient-specific pluripotent stem cells, could offer an alternative source for clinical applications of stem cell therapies in AID patients. We used nonintegrating oriP/EBNA-1-based episomal vectors to reprogram dermal fibroblasts from patients with AIDs such as ankylosing spondylitis (AS), Sjögren''s syndrome (SS) and systemic lupus erythematosus (SLE). The pluripotency and multilineage differentiation capacity of each patient-specific iPSC line was validated. The safety of these iPSCs for use in stem cell transplantation is indicated by the fact that all AID-specific iPSCs are integrated transgene free. Finally, all AID-specific iPSCs derived in this study could be differentiated into cells of hematopoietic and mesenchymal lineages in vitro as shown by flow cytometric analysis and induction of terminal differentiation potential. Our results demonstrate the successful generation of integration-free iPSCs from patients with AS, SS and SLE. These findings support the possibility of using iPSC technology in autologous and allogeneic cell replacement therapy for various AIDs, including AS, SS and SLE.  相似文献   

9.
Collagen-induced arthritis (CIA) is mediated by self-reactive CD4+ T cells that produce inflammatory cytokines. TGF-β2-treated tolerogenic antigen-presenting cells (Tol-APCs) are known to induce tolerance in various autoimmune diseases. In this study, we investigated whether collagen-specific Tol-APCs could induce suppression of CIA. We observed that Tol-APCs could suppress the development and severity of CIA and delay the onset of CIA. Treatment of Tol-APCs reduced the number of IFN-γ- and IL-17-producing CD4+ T cells and increased IL-4- and IL-5-producing CD4+ T cells upon collagen antigen stimulation in vitro. The suppression of CIA conferred by Tol-APCs correlated with their ability to selectively induce IL-10 production. We also observed that treatment of Tol-APCs inhibited not only cellular immune responses but also humoral immune responses in the process of CIA. Our results suggest that in vitro-generated Tol-APCs have potential therapeutic value for the treatment of rheumatoid arthritis as well as other autoimmune diseases.  相似文献   

10.
《中国化学快报》2023,34(3):107747
It is cellular immunotherapy for the tumor that the in vitro modified immunocytes from patients or donors are reinfused into patients to kill tumor cells. Chimeric antigen receptor T cell (CAR-T) therapy, one of the most successful and representative tumor cellular immunotherapies, is now the weapon for cancer after extensive research. Although CAR-T immunotherapy achieves success in treating relapsed/refractory hematological tumors, its drawbacks, including the poor effect in solid tumors, cytokine release syndrome (CRS) or CAR-T-related encephalopathy syndrome (CRES), on-target, off-tumor effect, and high cost, cannot be overlooked. Nanotechnology is advantageous in the construction of CARs, the transfection of T cells, the expansion, delivery, and antitumor effect of CAR-T cells, and the reduction of CAR-T therapy-associated toxicities. Currently, introducing nanotechnology into CAR-T immunotherapy has already been performed in numerous studies with highly promising results. In this review, we summarized the nanotechnologies used in CAR-T immunotherapy and discussed the challenges and directions of CAR-T immunotherapy combined with nanotechnologies in the future.  相似文献   

11.
Multiple myeloma(MM) is the second most common hematological tumor characterized by the proliferation of monoclonal plasma cells. Melphalan(MEL) is commonly used in the treatment of MM and is especially essential for patients undergoing autologous stem cell transplantation(ASCT). Although many drugs for MM have been developed in recent years, chemotherapy followed by ASCT remains the optimal option. Melphalan, the backbone of the conditioning regimen, brings severe toxicities at a high dose. Nan...  相似文献   

12.
It is well known that metabolism underlies T cell differentiation and functions. The pathways regulating T cell metabolism and function are interconnected, and changes in T cell metabolic activity directly impact the effector functions and fate of T cells. Thus, understanding how metabolic pathways influence immune responses and ultimately affect disease progression is paramount. Epigenetic and posttranslational modification mechanisms have been found to control immune responses and metabolic reprogramming. Sirtuins are NAD+-dependent histone deacetylases that play key roles during cellular responses to a variety of stresses and have recently been reported to have potential roles in immune responses. Therefore, sirtuins are of significant interest as therapeutic targets to treat immune-related diseases and enhance antitumor immunity. This review aims to illustrate the potential roles of sirtuins in different subtypes of T cells during the adaptive immune response.Subject terms: Acetylation, T cells  相似文献   

13.
Breast cancer therapy with classical chemotherapy is unable to eradicate breast cancer stem cells (BCSCs). Loss of p53 function causes growth and differentiation in cancer stem cells (CSCs); therefore, p53-targeted compounds can be developed for BCSCs-targeted drugs. Previously, hesperidin (HES), a citrus flavonoid, showed anticancer activities and increased efficacy of chemotherapy in several types of cancer in vitro and in vivo. This study was aimed to explore the key protein and molecular mechanism of hesperidin in the inhibition of BCSCs using bioinformatics and in vitro study. Bioinformatics analysis revealed about 75 potential therapeutic target proteins of HES in BCSCs (TH), in which TP53 was the only direct target protein (DTP) with a high degree score. Furthermore, the results of GO enrichment analysis showed that TH was taken part in the biological process of regulation of apoptosis and cell cycle. The KEGG pathway enrichment analysis also showed that TH is involved in several pathways, including cell cycle, p53 signaling pathway. In vitro experiment results showed that HES inhibited cell proliferation, mammosphere, and a colony formation, and migration in on MCF-7 3D cells (mammospheres). HES induced G0/G1 cell cycle arrest and apoptosis in MCF-7 cells 3D. In addition, HES treatment reduced the mRNA level of p21 but increased the mRNA level of cyclin D1 and p53 in the mammosphere. HES inhibits BCSCs in mammospheres. More importantly, this study highlighted p53 as a key protein in inhibition of BCSCs by HES. Future studies on the molecular mechanism are needed to validate the results of this study.  相似文献   

14.
Celastrol, the most abundant compound derived from the root of Tripterygium wilfordii, largely used in traditional Chinese medicine, has shown preclinical and clinical efficacy for a broad range of disorders, acting via numerous mechanisms, including the induction of the expression of several neuroprotective factors, the inhibition of cellular apoptosis, and the decrease of reactive oxygen species (ROS). Given the crucial implication of these pathways in the pathogenesis of Central Nervous System disorders, both in vitro and in vivo studies have focused their attention on the possible use of this compound in these diseases. However, although most of the available studies have reported significant neuroprotective effects of celastrol in cellular and animal models of these pathological conditions, some of these data could not be replicated. This review aims to discuss current in vitro and in vivo lines of evidence on the therapeutic potential of celastrol in neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, Huntington’s disease, multiple sclerosis, and cadmium-induced neurodegeneration, as well as in psychiatric disorders, such as psychosis and depression. In vitro and in vivo studies focused on celastrol effects in cerebral ischemia, ischemic stroke, traumatic brain injury, and epilepsy are also described.  相似文献   

15.
Glycosphingolipids including gangliosides play important regulatory roles in cell proliferation and differentiation. UDP-glucose:ceramide glucosyltransferase (Ugcg) catalyze the initial step in glycosphingolipids biosynthesis pathway. In this study, Ugcg expression was reduced to approximately 80% by short hairpin RNAs (shRNAs) to evaluate the roles of glycosphingolipids in proliferation and neural differentiation of mouse embryonic stem cells (mESCs). HPTLC/immunofluorescence analyses of shRNA-transfected mESCs revealed that treatment with Ugcg-shRNA decreased expression of major gangliosides, GM3 and GD3. Furthermore, MTT and Western blot/immunofluorescence analyses demonstrated that inhibition of the Ugcg expression in mESCs resulted in decrease of cell proliferation (P < 0.05) and decrease of activation of the ERK1/2 (P < 0.05), respectively. To further investigate the role of glycosphingolipids in neural differentiation, the embryoid bodies formed from Ugcg-shRNA transfected mESCs were differentiated into neural cells by treatment with retinoic acid. We found that inhibition of Ugcg expression did not affect embryoid body (EB) differentiation, as judged by morphological comparison and expression of early neural precursor cell marker, nestin, in differentiated EBs. However, RT-PCR/immunofluorescence analyses showed that expression of microtubule- associated protein 2 (MAP-2) for neurons and glial fibrillary acidic protein (GFAP) for glial cells was decreased in neural cells differentiated from the shRNA-transfected mESCs. These results suggest that glycosphingolipids are involved in the proliferation of mESCs through ERK1/2 activation, and that glycosphingolipids play roles in differentiation of neural precursor cells derived from mESCs.  相似文献   

16.
The toxicity of hydroxylated or carboxylated MWCNTs to human endothelial cells was modest, and the toxicity was not exacerbated by ER stress inducer.  相似文献   

17.
A major hurdle in stem cell therapy is the tumorigenic risk of residual undifferentiated stem cells. This report describes the design and evaluation of synthetic hybrid molecules that efficiently reduce the number of human induced pluripotent stem cells (hiPSCs) in cell mixtures. The design takes advantage of Kyoto probe 1 (KP‐1), a fluorescent chemical probe for hiPSCs, and clinically used anticancer drugs. Among the KP‐1–drug conjugates we synthesized, we found an exceptionally selective, chemically tractable molecule that induced the death of hiPSCs. Mechanistic analysis suggested that the high selectivity originates from the synergistic combination of transporter‐mediated efflux and the cytotoxicity mode of action. The present study offers a chemical and mechanistic rationale for designing selective, safe, and simple reagents for the preparation of non‐tumorigenic clinical samples.  相似文献   

18.
High-throughput, pillar-strip-based assays have been proposed as a drug-safety screening tool for developmental toxicity. In the assay described here, muscle cell culture and differentiation were allowed to occur at the end of a pillar strip (eight pillars) compatible with commercially available 96-well plates. Previous approaches to characterize cellular differentiation with immunostaining required a burdensome number of washing steps; these multiple washes also resulted in a high proportion of cellular loss resulting in poor yield. To overcome these limitations, the approach described here utilizes cell growth by easily moving the pillars for washing and immunostaining without significant loss of cells. Thus, the present pillar-strip approach is deemed suitable for monitoring high-throughput myogenic differentiation. Using this experimental high-throughput approach, eight drugs (including two well-known myogenic inhibitory drugs) were tested at six doses in triplicate, which allows for the generation of dose–response curves of nuclei and myotubes in a 96-well platform. As a result of comparing these F-actin (an actin-cytoskeleton protein), nucleus, and myotube data, two proposed differentiation indices—curve-area-based differentiation index (CA-DI) and maximum-point-based differentiation index (MP-DI) were generated. Both indices successfully allowed for screening of high-myogenic inhibitory drugs, and the maximum-point-based differentiation index (MP-DI) experimentally demonstrated sensitivity for quantifying drugs that inhibited myogenic differentiation.  相似文献   

19.
Ruthenium complexes are emerging as potential complements to platinum drugs. They also show promise as photo-diagnostic and therapeutic agents. However, most ruthenium species studied to date as potential drugs are characterized by short excitation/emission wavelengths. This limits their applicability for deep-tissue fluorescence imaging and light-based therapeutic treatments. Here, we report a Ru(ii) metallacycle (Ru1100) that emits at ≥1000 nm. This system possesses excellent deep-tissue penetration capability (∼7 mm) and displays good chemo-phototherapeutic performance. In vitro studies revealed that Ru1100 benefits from good cellular uptake and produces a strong anticancer response against several cancer cell lines, including a cisplatin-resistant A549 cell line (IC50 = 1.6 μM vs. 51.4 μM for cisplatin). On the basis of in vitro studies, it is concluded that Ru1100 exerts its anticancer action by regulating cell cycle progression and triggering cancer cell apoptosis. In vivo studies involving the use of a nanoparticle formulation served to confirm that Ru1100 allows for high-performance NIR-II fluorescence imaging-guided precise chemo-phototherapy in the case of A549 tumour mouse xenografts with no obvious side effects. This work thus provides a paradigm for the development of long-wavelength emissive supramolecular theranostic agents based on ruthenium.

Along-wavelength emissive Ru(ii) metallacycle chemo-phototheranostic was prepared via self-assembly that exhibits excellent photostability, deep-tissue penetration capability, and promising chemo-phototherapeutic performance in vitro and in vivo.  相似文献   

20.
《印度化学会志》2023,100(3):100936
Viruses have been around us for a long period of time; they are reported to affect humans, animals and plant at cellular level by using host's body to dwell and reproduce. The spread of HIV was reported in 1981 and created a global threat to public health. In the areas of basic virology, immunology and pathogenesis of HIV/AIDS, the development of antiretroviral medicines and significant progress has been made in recent years. Majority of these antiviral compounds have the potential to be used as HIV drugs, however they are frequently accompanied with some side effects. With the emergence of the COVID-19, human race is facing a new public health crisis and repurposing of antiviral drugs are being considered to block the function of Mpro of the new corona virus (SARS-CoV-2). This review covers the information related to the synthesis of various types of antiviral drugs and their toxicity. Some of these are used as repurposing drugs to cure patients suffering from other diseases/ infections. Therefore, information for in Silico studies of these antiviral drugs is incorporated. In brief, this review is focused on synthesis of different types of antiviral drugs, their repurposing role as well as toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号