首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a mesoscopic model for simulating the dynamics of a non-volatile liquid on a solid substrate. The wetting properties of the solid can be tuned from complete wetting to total non-wetting. This model opens the way to study the dynamics of drops and liquid thin films at mesoscopic length scales of the order of the nanometer. As particular applications, we analyze the kinetics of spreading of a liquid drop wetting a solid substrate and the dewetting of a liquid film on a hydrophobic substrate. In all these cases, very good agreement is found between simulations and theoretical predictions.  相似文献   

2.
This paper reports a new numerical scheme of the lattice Boltzmann method for calculating liquid droplet behaviour on particle wetting surfaces typically for the system of liquid–gas of a large density ratio. The method combines the existing models of Inamuro et al. [T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628–644] and Briant et al. [A.J. Briant, P. Papatzacos, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid–gas system, Philos. Trans. Roy. Soc. London A 360 (2002) 485–495; A.J. Briant, A.J. Wagner, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: I. Liquid–gas systems. Phys. Rev. E 69 (2004) 031602; A.J. Briant, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: II. Binary fluids, Phys. Rev. E 69 (2004) 031603] and has developed novel treatment for partial wetting boundaries which involve droplets spreading on a hydrophobic surface combined with the surface of relative low contact angles and strips of relative high contact angles. The interaction between the fluid–fluid interface and the partial wetting wall has been typically considered. Applying the current method, the dynamics of liquid drops on uniform and heterogeneous wetting walls are simulated numerically. The results of the simulation agree well with those of theoretical prediction and show that the present LBM can be used as a reliable way to study fluidic control on heterogeneous surfaces and other wetting related subjects.  相似文献   

3.
微矩形凹槽表面液滴各向异性浸润行为的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
受自然界启发,仿生微结构被广泛用于调控固-液界面的性质.研究显示,液滴在微结构表面的各向异性浸润行为可用于实现微流动方向和速度的控制,且其各向异性浸润与微结构的尺寸和分布等密切相关.本文研究了微矩形凹槽尺寸对液滴各向异性浸润行为的影响规律.结果显示,液滴沿平行沟槽的方向具有较小的运动阻力、易铺展,因此具有较小接触角;而垂直于沟槽方向,由于沟槽的阻隔作用具有较大运动阻力,因而具有较大接触角,并且在垂直方向液滴的浸润过程是三相线一系列钉扎和跳跃行为.在微矩形凹槽表面,液滴沿平行方向接触角θ//与肋板宽度R和凹槽宽度G密切相关,其值与表面固体面积比成反比;而垂直于沟槽方向的接触角θ⊥随肋板宽度R和凹槽宽度G变化基本保持不变.同时各向异性液滴的变形比L/W、特征方向接触角比值θ⊥/θ//与表面固体面积比成正比.研究结果有助于加深理解微结构表面浸润行为的机制,并为微矩形凹槽在微流动控制方向的应用提供技术支持.  相似文献   

4.
《Comptes Rendus Physique》2013,14(7):531-541
This is a review of the wetting properties of solid helium on various solid substrates. Due to its extreme purity and to its very fast growth dynamics, solid helium 4 is often considered as a model system in materials science. Several wetting phenomena have been studied with helium 4 crystals, namely contact angles on solid substrates with variable roughness, wetting on graphite where epitaxial growth takes place, the roughening transition as a function of film thickness, the wetting of grain boundaries by the liquid phase.  相似文献   

5.
When simply put on a solid, a liquid drop usually adopts the shape of a spherical cap or a puddle depending on its volume and on the wetting conditions. However, when the drop is subjected to a periodic field, a parametric excitation can induce a transition of shape and can break the drop’s initial axial symmetry, provided that the pinning forces at the contact-line are weak enough. Therefore, a standing wave appears at the drop interface and induces a periodic motion, with a frequency that equals half the excitation frequency. In the first part, we review the different situations where star drops can be generated from various types of periodic excitations. In the second part, we show that similar star drops can occur in a much less intuitive fashion when the drop is put on an air cushion, where no periodic motion is imposed a priori. Preliminary experiments as well as theoretical clues for a hydrodynamic interpretation, suggest that the periodic vibration is due to an inertial instability in the air layer below the drop.  相似文献   

6.
采用基于Shan-Chen伪势模型的格子Boltzmann方法,对液滴在存在润湿梯度的倾斜表面上克服重力、自下而上运动的过程进行模拟。探究润湿梯度、液滴尺寸、Bond数以及表面倾斜角度对液滴运动的影响。计算结果表明:液滴在运动过程中,内部会出现沿斜面向上的速度矢量,润湿梯度越大,液滴运动速度越快,润湿长度也越长,且动态接触角减小速率越快。液滴尺寸和Bond数对液滴运动的影响较小,但存在临界Bond数,超过该临界Bond数时,液滴将沿梯度润湿表面向下运动。表面倾角对液滴运动有显著影响,倾角增大,液滴运动速度和润湿长度都明显减小。  相似文献   

7.
Transitional processes with dry spot formation and drying crisis development were studied experimentally for the gradual and quasi-stationary laws of heat release on a thin-wall heater cooled by a falling film of cryogenic liquid. It is shown that for low densities of the heat flux, the laminar-wave liquid film decays with formation of a self-organizing system of metastable regular structures with boiling liquid jets and large dry zones between them. The numerical experiment modelling the process of repeated wetting of a superheated surface dried by impulse heat release was carried out. It was found for the first time that the local motion velocities of different zones of the 2D wetting front differ significantly. Reliability of results obtained by numerical methods was proved by direct comparison with experimental data. The work was financially supported by the Russian Foundation for Basic Research (Grant No. 5-08-18022-a) and Siberian Branch of RAS (Integration project of SB RAS together with ITP of UB RAS No. 2.5).  相似文献   

8.
The dynamic process of rewetting of the overheated surface by gravitationally falling film of cryogenic liquid was firstly modeled numerically with consideration of local distribution of heat transfer coefficient in the wetting zone along the 2D front. The front shape corresponding to self-organizing regular structures observed in experiments was obtained in the numerical experiment. Evolution of the front shape was studied. It was shown that local motion velocities of different areas of the 2D wetting front differed significantly. Total time of transitional process was determined by the minimal velocity of evaporating liquid boundaries in the front zones between boiling jets. This model allows quantitative determination for the wetting front velocity, variable in time and space, and temperature fields in the heater. Reliability of calculation results was proved by direct comparison with experimental data.  相似文献   

9.
Ratchet-like topological structures for the control of microdrops   总被引:1,自引:0,他引:1  
The concepts of ‘force-free’ motion can be applied to liquid microdrops confined in asymmetrically structured geometries to set them into motion. We illustrate this idea with several experiments in which fluctuations in the drop shape and wetting properties are triggered by different physical means either by acting transversally to the motion with an on/off electric field, or along this motion with a low-frequency electric field of zero mean value or by vibrating the substrate. These findings can find natural applications in the field of integrated analysis systems. Received: 25 October 2001 / Accepted: 14 January 2002 / Published online: 22 April 2002  相似文献   

10.
液滴在梯度微结构表面上的铺展动力学分析   总被引:1,自引:0,他引:1       下载免费PDF全文
林林  袁儒强  张欣欣  王晓东 《物理学报》2015,64(15):154705-154705
本文通过改变肋柱宽度和间距, 构造了二级和多级梯度微结构表面, 采用格子-Boltzmann方法对液滴在两种梯度表面上的铺展过程进行了研究, 探析液滴运动的机理和调控方法. 结果表明, 在改变肋柱间距的二级梯度表面上, 当液滴处于Cassie态时, 接触角滞后大小与粗糙度梯度成正比关系; 当液滴从Cassie态转换为Wenzel态或介于两者之间的不稳定态时, 这一正比关系不再遵循. 在改变肋柱宽度的二级梯度表面上, 接触角滞后大小与粗糙度梯度始终成正比关系. 在多级梯度表面上, 随液滴初始半径增大, 接触角滞后减小, 但液滴平衡位置相较于初始位置偏离增大. 对梯度微结构表面上液滴运动和接触角滞后的定量分析, 可为实现梯度微结构表面液滴运动调控提供理论依据.  相似文献   

11.
The motion of a liquid drop under the action of acoustic vibration is studied for two limiting cases: the high-frequency case, when the effect of viscous forces can be ignored, and the low-frequency case, when the viscosity is significant. Equations describing the motion of a drop in an axially symmetric capillary with a varying cross section are derived by taking into account the hysteresis of the wetting angle. Numerical calculations are performed for cylindrical, conic, and corrugated capillaries.  相似文献   

12.
We summarize the main results of our study of the density-density correlation function for Sullivan's model of a gas adsorbed on a solid substrate. In the approach to complete wetting, when a thick film of liquid density is adsorbed at the substrate, long-ranged transverse (parallel to the surface) correlations develop at the edge of the film where the density profile is similar to that of a liquid-gas interface. For a class I wetting situation the range of the transverse correlations increases and ultimately diverges as the bulk gas pressure approaches the saturated vapour pressure. We comment on other situations where long-ranged correlations arise and mention the possibility of observing these in diffraction experiments and in computer simulations. Sullivan's model always predicts a second-order phase transition between class II and class I wetting. By extending his model and allowing the attractive part of the solid-fluid potential to be longer-ranged than the attractive fluid-fluid potential we find that this wetting transition can become a first-order (Cahn) transition.  相似文献   

13.
The pressure effect on grain boundary wetting in Fe-6 at.%Si bicrystals of different misorientation angles but constant misorientation axis has been studied. The wetting agent was liquid zinc. It was found that the pressure for the dewetting transition is higher for the near 5 boundary than for the other general boundaries, where is the inverse density of the coincidence sites in the two misoriented crystal lattices. This result was explained assuming a thinner liquid film wetting the near 5 boundary than in the case of nonperiodic grain boundaries. Furthermore, the wetting angle increased with increasing pressure. The wetting angle dependence on pressure could be understood assuming a excess surface volume of the solid/liquid (S/L) interface higher than 0.2 nm. This is considerably higher than the estimated excess volumes of grain boundaries based on computer simulations. To explain this result, it was postulated that in the system studied, where diffusion of Zn, Fe and Si perpendicular to the S/L interface takes place, the S/L interface is relatively thick and the interaction between the two crystals separated by the melt extends over more than 2 nm distance. This long-range interaction was rationalized in terms of clusters of several atoms, detaching from the solid and dissolving in the melt at some distance from the bulk.  相似文献   

14.
Grain boundary (GB) phase transitions can change drastically the properties of polycrystals. The GB wetting phase transition can occur in the two-phase area of the bulk phase diagram where the liquid (L) and solid (S) phases are in equlibrium. Above the temperature of the GB wetting phase transition a GB cannot exist in equlibrium contact with the liquid phase. The experimental data on GB wetting phase transitions in numerous systems are analysed. The GB wetting tie-line can continue in the one-phase area of the bulk phase diagram as a GB solidus line. This line represents the GB premelting or prewetting phase transitions. The GB properties change drastically when GB solidus line is crossed by a change in the temperature or concentration. The experimental data on GB segregation, energy, mobility and diffusivity obtained in various systems both in polycrystals and bicrystals are analysed. In case if two solid phases are in equilibrium, the GB “solid state wetting” can occur. In this case the layer of the solid phase 2 has to substitute GBs in the solid phase 1. Such GB phase transition occurs if the energy of two interphase boundaries is lower than the GB energy in the phase 1.  相似文献   

15.
When a liquid drop contacts a wettable surface, the liquid spreads over the solid to minimize the total surface energy. The first moments of spreading tend to be rapid. For example, a millimeter-sized water droplet will wet an area having the same diameter as the drop within a millisecond. For perfectly wetting systems, this spreading is inertially dominated. Here we identify that even in the presence of a contact line, the initial wetting is dominated by inertia rather than viscosity. We find that the spreading radius follows a power-law scaling in time where the exponent depends on the equilibrium contact angle. We propose a model, consistent with the experimental results, in which the surface spreading is regulated by the generation of capillary waves.  相似文献   

16.
ABSTRACT

We present a numerical study of a simple density functional theory model of fluid adsorption occurring on a planar wall decorated with a narrow deep stripe of a weaker adsorbing (relatively solvophobic) material, where wall-fluid and fluid-fluid intermolecular forces are considered to be dispersive. Both the stripe and outer substrate exhibit first-order wetting transitions with the wetting temperature of the stripe lying above that of the outer material. This geometry leads to a rich phase diagram due to the interplay between the pre-wetting transition of the outer substrate and an unbending transition corresponding to the local evaporation of liquid near the stripe. Depending on the width of the stripe, the line of unbending transitions merges with the pre-wetting line inducing a two-dimensional wetting transition occurring across the substrate. In turn, this leads to the continuous pre-drying of the thick pre-wetting film as the pre-wetting line is approached from above. Interestingly we find that the merging of the unbending and pre-wetting lines occurs even for the widest stripes considered. This contrasts markedly with the scenario where the outer material has the higher wetting temperature, for which the merging of the unbending and pre-wetting lines only occurs for very narrow stripes.  相似文献   

17.
We study theoretically the phase behavior of the continuum Random Anisotropy Nematic model. A domain-type pattern is assumed to appear in a distorted nematic liquid crystal (LC) phase. We map the model parameters to physical quantities characterizing LCs confined to Controlled-Pore Glasses and LC-aerosil dispersions. The domain size dependence on the disorder strength is obtained in accordance with the Imry-Ma prediction. The model estimates for temperature shifts of the paranematic-nematic phase transition and for the critical point, where this transition ceases to exist, are compared to the available experimental results.Received: 28 March 2004, Published online: 29 June 2004PACS: 61.30.-v Liquid crystals - 61.30.Dk Continuum models and theories of liquid crystal structure - 61.30.Gd Orientational order of liquid crystals; electric and magnetic field effects on order - 61.30.Hn Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions  相似文献   

18.
We propose coupled evolution equations for the thickness of a liquid film and the density of an adsorbate layer on a partially wetting solid substrate. Therein, running droplets are studied assuming a chemical reaction underneath the droplets that induces a wettability gradient on the substrate and provides the driving force for droplet motion. Two different regimes for moving droplets--reaction-limited and saturated regime--are described. They correspond to increasing and decreasing velocities with increasing reaction rates and droplet sizes, respectively. The existence of the two regimes offers a natural explanation of prior experimental observations.  相似文献   

19.
P. Tarazona  R. Evans 《Molecular physics》2013,111(5):1033-1063
We have investigated the behaviour of the pairwise distribution function for Sullivan's model of a gas adsorbed on a solid substrate. We show that in the approach to complete wetting, when a thick film of liquid density is adsorbed on the substrate, long ranged transverse correlations (parallel to the surface) develop at the edge of the film where the density profile of the fluid resembles that of a liquid-gas interface. The long ranged correlations can be attributed to damped capillary-wave-like fluctuations; for a class I wetting situation the damping decreases and the range of the correlations increases and ultimately diverges as the bulk gas pressure approaches the saturated vapour pressure.

Our analysis provides a physical explanation of the long ranged transverse correlations calculated by Foiles and Ashcroft in their recent study of a model of argon at a carbon dioxide substrate. We also predict that long range transverse correlations will occur for the case of adsorption from a dense liquid provided the solid-fluid potential is such that a thick film of gas forms between the substrate and the bulk liquid.  相似文献   

20.
《Surface science》1986,175(1):141-156
High resolution heat capacity measurements of multilayer methane adsorbed on graphite are presented and analyzed. The evidence indicates the presence of two wetting transitions: a first-order dewetting transition at Tw = 90.48 K, and a continuous wetting transition at the triple point, Tt = 90.66 K. This behavior is to be expected in connection with the melting transition in any system where both solid and liquid wet the surface. Heat capacity measurements can provide a valuable diagnostic tool for the wetting behavior of films too thick to be investigated by other means. In the thin film limit, we find that the latent heat of melting vanishes at about 4 layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号