首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity-corrected multiple-aliquot regenerative-dose (MAR) protocol provides a reliable approach for fine-grained quartz optically stimulated luminescence (OSL) dating. For reliable estimation of the equivalent dose (De), we investigated certain basic experimental parameters in the fine-grained quartz MAR OSL dating of Chinese loess. (1) For suitable bleaching of the natural OSL signal of the regenerative-dose aliquots, the effect of bleaching duration using sunlight, SOL2 and blue LEDs on De was studied, and it is found that the appropriate method is a short-duration SOL2 (e.g. 5 min) or blue LEDs (e.g. 60 s) bleaching. (2) To select the appropriate test dose, the relationship between the test dose and De was investigated based on three samples having De values of approximately 11, 31 and 137 Gy respectively. It is suggested that the test dose for sensitivity correction may be limited to less than approximately 10–20 Gy. (3) Three commonly used fitting modes for quartz OSL growth curve were compared at three regenerative-dose scales. The results indicate that the mode of two saturating exponential functions plus a constant is appropriate and universal. (4) The comparison of De values derived using OSL approach with those obtained using the recuperated OSL (ReOSL) protocol shows that the reliable De estimation in the fine-grained quartz MAR OSL dating of Chinese loess may be limited to less than approximately 300 Gy. (5) The comparison of growth curves for 18 samples from the Weinan, Xifeng and Jingyuan sites shows that it is feasible to construct a standardized growth curve (SGC) for fine-grained quartz OSL signal in the Chinese Loess Plateau (CLP).  相似文献   

2.
《Radiation measurements》2000,32(3):233-246
The slow component of quartz OSL displays a number of properties that clearly distinguish it from the main (‘rapidly bleachable’) part of the quartz OSL signal traditionally used for dating. These properties include an extremely high thermal stability, dose saturation level and a charge concentration dependence in both signal form and decay rate. The physical mechanism responsible for the slow component is thought at present to involve a direct donor–acceptor recombination component, possibly associated with competing pathways below, and possibly up to, the conduction band. The thermal stability and high dose saturation characteristics of the slow component suggest much potential for long-range dating exists although at present it is uncertain whether difficulties associated with partial resetting may preclude routine use of the slow component for dating sedimentary deposits. A single-aliquot additive dose method was however used to obtain an estimate of De from the slow component for an Egyptian quartz sample that was in broad agreement with previous estimates based on the standard multiple-aliquot additive dose method.The slow component is often small in magnitude compared to the initial portion of the quartz OSL decay. However, this is not always the case and for some samples significant inaccuracies in De estimation may occur when deriving ages from the initial ‘rapidly bleaching’ portion of the OSL decay if the effect of the slow component is ignored or taken to be constant.  相似文献   

3.
《Radiation measurements》2009,44(2):149-157
In this study, we applied optically stimulated luminescence (OSL) dating to two fine grain sediment samples collected at Jeongokri, Korea. A single aliquot regenerative dose (SAR) procedure was applied to both polymineral grains and to chemically isolated (H2SiF6) quartz grains of 4–11 μm diameter. For polymineral fine grains, the OSL IR depletion ratio and the equivalent dose (De) plateau test appear to be equally sensitive indicators of appropriate IR stimulation time for use in the ‘double SAR’ protocol. Additionally, the OSL IR depletion ratio test gives an indication of the relative mineral composition of the samples, hence providing an assessment of the likelihood of obtaining a quartz-dominated [post-IR] OSL signal. Use of higher preheat temperatures would assist in thermally eroding the non-quartz component of the [post-IR] OSL signal from polyminerals. For the quartz fine grains, data from both natural De determinations and laboratory dose recovery tests are required to identify the appropriate preheat temperatures for dating, due to problems of thermal transfer. This phenomenon is particularly exaggerated for these samples due to the large De values (≥350 Gy) and hence low slope of the dose–response curve. The double SAR method cannot be applied ubiquitously, even after careful and rigorous study of one sample from a section. Quartz OSL dating using a range of preheat temperatures is suggested to be the most suitable method for OSL dating of fine grain sediments.  相似文献   

4.
In this study we assess the signatures of multi-grain averaging effects for a series of sedimentary samples taken from the archaeological site of Hotel California, Atapuerca, Spain. We focus on the special case of equivalent dose (De) measurements made on single-grain discs that contain more than one quartz grain in each of the individual grain-hole positions with the aims of (i) providing insight into the nature and extent of averaging effects in very small multi-grain aliquots of sedimentary quartz, and (ii) assessing the suitability of ‘pseudo’ single-grain De measurements for this particular dating application. Pseudo single-grain OSL measurements made on standard discs loaded with 90–100 μm grains (equivalent to ~30 grains per hole) yield significantly different De distribution characteristics and finite mixture model (FMM) burial dose estimates compared with single-grain OSL measurements. Grains with aberrant luminescence behaviours, which are routinely rejected during single-grain analysis, exert strong averaging effects on the pseudo single-grain and multi-grain aliquot De distributions. Grain-hole averaging effects arising from pseudo single-grain measurements also give rise to ‘phantom’ dose components and are apt to provide bias assessments of quartz signal characteristics and grain type classifications. Though this is a site-specific study, it serves as a cautionary note for interpretations of other pseudo single-grain OSL and De datasets – particularly those obtained from measurements of discs containing several tens of grains per hole and those derived from complex depositional environments. The use of custom single-grain discs drilled with smaller sized grain holes is recommended as a means of limiting grain-hole averaging effects when dealing with very fine (<180 μm) sediments.  相似文献   

5.
Optically stimulated luminescence (OSL) measurements of quartz are widely used to measure equivalent dose (De). At radiation doses above ~100 Gy, saturation of traps results in a decrease in the rate of growth of the OSL signal, and this makes calculation of De increasingly difficult. A series of dose recovery experiments was undertaken using single grains of quartz from Kalambo Falls, Zambia to explore saturation of single grains. When the OSL signal from many grains is averaged, the characteristic dose (D0) is 47 Gy, typical of published values for quartz. However, D0 for individual grains varies from ~10 to 100 Gy. Doses up to two times the average D0 could be accurately recovered, but above this dose the De became increasingly underestimated. Overdispersion for this type of experiment should be zero, but was observed in all data sets; furthermore the value of overdispersion increased with De. An additional acceptance criterion, the Fast Ratio, is suggested for single grain OSL analysis. This criterion assesses the relative contribution of the fast component of the OSL signal. Including this as an additional acceptance criterion leads to an improved precision, with overdispersion reduced to zero, and improved accuracy in dose recovery at high doses.  相似文献   

6.
The post-IR IRSL protocol with single K-feldspar grains was applied to three samples taken from a fluvial sedimentary sequence at the archaeological site of the Dali Man, Shaanxi Province, China. K-feldspar coarse grains were extracted for measurement. Approximately 30–40% of the grains were sufficiently bright to measure, and after application of rejection criteria based on signal strength, recuperation, recycling ratio and saturation dose, ~10–15% of the grains were used for De calculation. The relationship of signal decay rate and form of De(t) with the recovery dose were investigated. The dose recovery ratios of the samples after initial bleaching with the four different light sources were within uncertainties of unity. No anomalous fading was observed. The over-dispersion of the recovered dose and De values were similar, suggesting neither incomplete resetting of the post-IR IRSL signals nor spatially heterogeneous dose rates significantly affected the natural dose estimates. The values of De obtained with the single K-feldspar grain post-IR IRSL protocol were in the range ~400–490 Gy. Combining all of the measured single-grain signals for each of the individual samples (into a ‘synthetic single aliquot’) increased the De estimates to the range ~700–900 Gy, suggesting that the grains screened-out by the rejection criteria may have the potential to cause palaeodose over-estimation, although this finding requires a more extensive investigation. Thermally transferred signals were found in the single K-feldspar grains post-IR IRSL protocol, and the proportion of thermally transferred signal to test-dose OSL signal (stimulation at 290 °C) from the natural dose was higher than from regenerative doses, and the proportion was grain- and dose-dependent. As such, TT-post-IR IRSL signals at 290 °C have the potential to cause dose underestimation, although this may be reduced by using larger test-dose irradiations. Our study demonstrates considerable potential in the post-IR IRSL method in providing chronological control in studies relevant to human evolution in the later-Pleistocene.  相似文献   

7.
Post-IR IRSL (pIRIR) signals from K-feldspar grains measured at elevated temperatures are increasingly being used for dating sediments. Unfortunately the pIRIR signal from K-feldspars bleaches more slowly than other signals (e.g. OSL from quartz) upon exposure to daylight, leading to concerns about residual signals remaining at deposition. However, earlier studies have not assessed whether the pIRIR signal bleaches at the same rate in all feldspar grains. In this study laboratory bleaching experiments have been conducted and for the first time the results show that the rate at which the pIRIR signal from individual K-feldspar grains bleach varies. To determine whether grain-to-grain variability in bleaching rate has a dominant control on equivalent dose (De) distributions determined using single grains, analysis was undertaken on three samples with independent age control from different depositional environments (two aeolian and one glaciofluvial). The De value determined from each grain was compared with the rate at which the pIRIR225 signal from the grain bleaches. The bleaching rate of each grain was assessed by giving a 52 Gy dose and measuring the residual De after bleaching for an hour in a solar simulator. There is no clear relationship between the rate at which the pIRIR225 signal of an individual grain bleaches and the magnitude of its De. It is concluded that variability in the bleaching rate of the pIRIR225 signal from one grain to another does not appear to be a dominant control on single grain De distributions.  相似文献   

8.
Single aliquot protocols are now widely used as a means of measuring the equivalent dose (De) in quartz and feldspar optical stimulated luminescence (OSL) dating of both heated and sedimentary materials. The most recent of these is the single-aliquot regenerative-dose (SAR) protocol, first suggested by Murray and Roberts (Radiation Measurements 29, 503–515, 1998). In this approach, each natural or regenerated dose OSL measurement is corrected for changes in sensitivity using the OSL response to a subsequent test dose (10–20% of De). If the sensitivity correction is adequate, then the corrected OSL response should be independent of prior dose and thermal/optical treatment, i.e. there should be no change in the sensitivity-corrected dose–response curve on remeasurement. Here we examine the interpretation of the sensitivity corrected growth curve as a function of dose, and the effect of changing measurement conditions (e.g. preheat temperature, size of test dose, stimulation temperature) on the estimation of De. The dependence of the dose response on prior treatment is tested explicitly, and the significance of thermal transfer discussed. It is concluded that a robust SAR protocol is now available for quartz, and that it is applicable to a wide range of heated and unheated materials.  相似文献   

9.
The dependence of the equivalent dose (De) on the temperature used at stimulation when the standard OSL dating protocol (SAR) is applied has been investigated for sediment quartz samples. A considerable change in this value appears in the temperature region from 80 to 140 °C that is known for high complexity in OSL processes in quartz. Our observations suggest that the variation in the obtained results at least partly is caused by the laboratory procedure used when the natural OSL signal is measured. Directions for further investigations concerning this undesirable effect are indicated.  相似文献   

10.
Steady-state turbulence is generated in a tank of water and the trajectories of particles forming a compressible system on the surface are tracked in time. The initial uniformly distributed floating particles coagulate and form a fractal structure, a rare manifestation of a strange attractor observable in real space. The surface pattern reaches a steady state in approximately 1 s. Measurements are made of the fractal dimensions Dq(t) (q=1 to 6) of the floating particles starting with the uniform distribution Dq(0)=2 for Taylor Microscale Reynolds number Reλ?160. Focus is on the time evolution of the correlation dimension D2(t) as the steady state is approached. This steady state is reached in several large eddy turnover times and does so at an exponential rate.  相似文献   

11.
An explicit form for the charmed quark fragmentation function DCc(z) into hadrons has been obtained with the help of the “reciprocity relation” and the c-quark distribution function in charmed mesons (the function calculated in terms of the Kuti-Weisskopf model). DCc(z) turns out to peak mainly at z close to 1. The analysis of new data on muon pair production in neutrino reactions points to such a behaviour of the DCc(z) function. The obtained fragmentation function, contrary to those, used earlier, leads to a charmed particle (average) multiplicity in e+e?-annihilation independent of energy.  相似文献   

12.
13.
Optimal bounds for the pion electromagnetic form factor F(t) below threshold and on the pion mean-square charge radius 〈rπ2〉 = 6F'(0) are derived. Use is made of analyticity arguments and of experimental data on F(t) from e+e?π+π? as well as e?p → e?nπ+. The method accounts in an approximate way for the statistical errors of the experimental information. Numerical results for F(t) are calculated for the CEA as well as the DESY electroproduction data.  相似文献   

14.
The stability problems for the Korteweg-de Vries equation, where linear stability fails, are investigated by the inverse scattering method. A rather general solution u(t, x) of the K-dV equation is shown to depend, for fixed time t, continuously on the initial condition u(0, x). For a continuum solution uc(t, x), this continuity holds uniformly in t (stability), but for a soliton solution this is not true. A soliton solution can be uniquely decomposed into a continuum and discrete (soliton) part: u(t, x) = ue(t, x) + ud(t, x). Then the perturbed solution u is close to u after a suitable t-dependent “shift” of the soliton part (form stability).  相似文献   

15.
We discuss the precise momentum dependence of the Ke3 form factor f+(t) by studying some of the recent experimental results on K0L → π± e? ν decays. The parametrization of f+(t) based on the assumption of K1-dominance can considerably improve the agreement of Sirlin's relation with existing data.  相似文献   

16.
A rigorous lower bound on the slope parameter γ(s, t) = d ln A(s, t)/dt is derived for 0 < t < t0 where A(s, t) is the absorptive part of the elastic scattering amplitude and t0 is related to the right extreme of the Lehmann-Martin ellipse. When A(s, t) has high-energy behavior like sα(t)lnη(t)s…, this lower bound on α(s, t) is used to obtain lower bounds on α′(t) for 0 < t < t0, which saturate for ‘parabolic trajectories’. We also obtain a lower bound on γ(s, t) for t < 0 which can be used to find the nearforward region in which γ(s, t) cannot vanish.  相似文献   

17.
A generalization of the Vollhardt-Wölfle localization theory is proposed to make it possible to study the spatial-temporal dispersion of the kinetic coefficients of a d-dimensional disordered system in the low-frequency, long-wavelength range (ω?F and q?k F ). It is shown that the critical behavior of the generalized diffusion coefficient D(q,ω) near the Anderson transition agrees with the general Berezinskii-Gor’kov localization criterion. More precisely, on the metallic side of the transition the static diffusion coefficient D(q,0) vanishes at a mobility threshold λ c common for all q: D(q, 0)∝t=(λ c ?λ)/λ c →0, where λ=1/(2π?F τ) is a dimensionless coupling constant. On the insulator side, q≠0 D(q,ω)∝? as ω→0 for all finite q. Within these limits, the scale of the spatial dispersion of D(q,ω) decreases in proportion to t in the metallic phase and in proportion to ωξ 2, where ξ is the localization length, in the insulator phase until it reaches its lower limit ~λ F. The suppression of the spatial dispersion of D(q,ω) near the Anderson transition up to the atomic scale confirms the asymptotic validity of the Vollhardt-Wölfle approximation: D(q,ω)?D(ω) as |t|→0 and ω→0. By contrast, the scale of the spatial dispersion of the electrical conductivity in the insulator phase is of order of the localization length and diverges in proportion to |t|?v as |t|→0.  相似文献   

18.
《Radiation measurements》2009,44(2):132-143
The thermally transferred optically stimulated luminescence (TT-OSL) responses of chemically purified fine-grained quartz from seven loess-like samples from Korea are presented. In particular, the experimental procedures used to separate the dose-dependent (recuperated OSL, ReOSL) and dose-independent parts of the signal were explored. The OSL signals used to monitor the sensitivity changes that take place during the measurement sequences used to determine the equivalent dose were investigated. A single aliquot procedure was used for the TT-OSL measurements and resulted in linear growth of the ReOSL with dose up to at least 2 kGy. For this suite of samples, a standardised growth curve (SGC) was constructed for the ReOSL, tested with dose recovery experiments, and was used to obtain De values for the seven samples.  相似文献   

19.
Changes in the optical density ΔD(t), halfwidth ΔH/2(t), and spectral position of the maximum ΔλSP(t) of the surface plasmon band in Cu nanoparticles after their excitation by femtosecond laser pulses have been investigated. The ΔλSP(t) dependence appears to be alternating and is accompanied by a nonmonotonic variation in ΔH/2(t) in the time interval 0–5 ps. The results are explained in a model based on the evolution of the dielectric response of such a composite medium excited by intense laser pulses.  相似文献   

20.
W. Hess  R. Klein 《Physica A》1976,85(3):509-527
Starting from a N-particle diffusion equation for a system of N interacting spherical Brownian particles, a non-linear transport equation for concentration fluctuations δc(r, t) of the particles is derived. This dynamic equation is transformed into a hierarchy of equations for retarded propagators of increasing numbers of concentration fluctuations. A cluster expansion to lowest order in the average concentration results in a set of two coupled equations. The spectrum of light scattered by the interacting particles is in general not a Lorentzian, due to the non-linear term in the transport equation. For small scattering wave vectors k the width is D(ω)k2, where ω is the transferred frequency. It is shown that D(0) = De, the effective diffusion coefficient. For a hardcore interaction potential the spectrum is Lorentzian and it is found that De = D0(1 + φ), where D0 is the diffusion constant for independent particles and φ the volume concentration of Brownian particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号