首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We realized a series of experiments to study the physics of laser–plasma interaction in an intensity regime of interest for the novel “Shock Ignition” approach to Inertial Fusion. Experiments were performed at the Prague Asterix Laser System laser in Prague using two laser beams: an “auxiliary” beam, for pre-plasma creation, with intensity around 7?×?1013?W/cm2 (250?ps, 1ω, λ?=?1315?nm) and the “main” beam, up to 1016?W/cm (250?ps, 3ω, λ?=?438?nm), to launch a shock. The main goal of these experiments is to study the process of the formation of a very strong shock and the influence of hot electrons in the generation of very high pressures. The shock produced by the ablation of the plastic layer is studied by shock breakout chronometry. The generation of hot electrons is analyzed by imaging Kα emission.  相似文献   

3.
The instability of an electron beam in cold plasma is considered in the linear potential approximation with different velocity-distribution functions of beam electrons. It is demonstrated that the mechanism of beam instability in plasma changes as the electron-velocity spread is increased: the hydrodynamic single-particle instability mode evolves into the hydrodynamic collective mode or the single-particle kinetic one. Instability growth rates in different modes are determined analytically and numerically.  相似文献   

4.
We study the electronic transport in the presence of electron–phonon interaction (EPI) for a molecular electronic device. Instead of mean field approximation (MFA), the related phonon correlation function is conducted with the Langreth theorem (LT). We present formal expressions for the bandwidth of the electron’s spectral function in the central region of the devices, such as quantum dot (QD), or single molecular transistor (SMT). Our results show that the out-tunneling rate depends on the energy, bias voltage and the phonon field. Besides, the predicted conductance map, behaving as a function of bias voltage and the gate voltage, gets blurred at the high bias voltage region. These EPI effects are consistent with the experimental observations in the EPI transport experiment.  相似文献   

5.
A theoretical study on the plasmon-polariton modes coupled with a fast electron beam inside a metallic single-walled carbon nanotube is presented. The Maxwell’s equations coupled with a linearized hydrodynamic model for the nanotube’s charge oscillations are used. By considering the electron beam effects, general expression of dispersion relation of electromagnetic modes on nanotube’s surface is obtained. It is shown numerically that by considering the electron beam effects, the polariton frequency shifts to lower values.  相似文献   

6.
The interaction of intense lasers with solid matter generates a hot plasma state that is well described by the Vlasov–Fokker–Planck equation. Accurate and efficient modeling of the physics in these scenarios is highly pertinent, because it relates to experimental campaigns to produce energy by inertial confinement fusion on facilities such as the National Ignition Facility. Calculations involving the Vlasov–Fokker–Planck equation are computationally intensive, but are crucial to proper understanding of a wide variety of physical effects and instabilities in inertial fusion plasmas. In this topical review, we will introduce the background physics related to Vlasov–Fokker–Planck simulation, and then proceed to describe results from numerical simulation of inertial fusion plasma in a pedagogical manner by discussing some key numerical algorithm developments that enabled the research to take place. A qualitative comparison of the techniques is also given.  相似文献   

7.
8.
We study numerically the effects of an extrinsic spin–orbit interaction on the model of electrons in n-doped semiconductors of Matsubara and Toyozawa (MT). We focus on the analysis of the density of states (DOS) and the inverse participation ratio (IPR) of the spin–orbit perturbed states in the MT set of energy eigenstates in order to characterize the eigenstates with respect to their extended or localized nature. The finite sizes that we are able to consider necessitate an enhancement of the spin–orbit coupling strength in order to obtain a meaningful perturbation. The IPR and DOS are then studied as a function of the enhancement parameter.  相似文献   

9.
We describe a method for estimating the initial density profile of the liner shell from experimental current and voltage oscillograms with correction of the radius of the pinch from its optical images. It is shown that the average radial profile of the initial density distribution of plasma–metal liners can be approximated by two Gaussian curves with different dispersions. The largest contribution to the main peak of the initial density distribution comes from bismuth cathode material (bismuth) ions, while the contribution to the second Gaussian curve is due to the substance of the insulator over the surface of which the vacuum arc is initiated.  相似文献   

10.
We expose the role of collisional energy loss on high p T photon data measured by PHENIX collaboration by calculating photon yield in jet–plasma interaction. The phase-space distribution of the participating jet is dynamically evolved by solving Fokker–Planck equation. It is shown that the data are reasonably well reproduced when contributions from all the relevant sources are taken into account. Predictions at higher beam energies relevant for LHC experiment have been made.  相似文献   

11.
Implicit particle-in-cell codes offer advantages over their explicit counterparts in that they suffer weaker stability constraints on the need to resolve the higher frequency modes of the system. This feature may prove particularly valuable for modeling the interaction of high-intensity laser pulses with overcritical plasmas, in the case where the electrostatic modes in the denser regions are of negligible influence on the physical processes under study. To this goal, we have developed the new two-dimensional electromagnetic code ELIXIRS (standing for ELectromagnetic Implicit X-dimensional Iterative Relativistic Solver) based on the relativistic extension of the so-called Direct Implicit Method [D. Hewett, A.B. Langdon, Electromagnetic direct implicit plasma simulation, J. Comput. Phys. 72 (1987) 121–155]. Dissipation-free propagation of light waves into vacuum is achieved by an adjustable-damping electromagnetic solver. In the high-density case where the Debye length is not resolved, satisfactory energy conservation is ensured by the use of high-order weight factors. In this paper, we first derive the electromagnetic direct implicit method as a simplified Newton scheme. Its linear properties are then investigated through numerically solving the relation dispersions obtained for both light and plasma waves, accounting for finite space and time steps. Finally, our code is successfully benchmarked against explicit particle-in-cell simulations for two kinds of physical problems: plasma expansion into vacuum and relativistic laser–plasma interaction. In both cases, we will demonstrate the robustness of the implicit solver for crude discretizations, as well as the gains in efficiency which can be realized over standard explicit simulations.  相似文献   

12.
Technical Physics - Thresholds of explosive decomposition Hcr under irradiation using the first harmonic of a pulsed neodymium laser (14 ns) are experimentally determined for pentaerythritol...  相似文献   

13.
The two widely studied thermodynamically consistent quasiparticle models are compared by studying the statistics and thermodynamics of relativistic plasma consists of (e, e +, ??). We use different density dependent dispersion relation for electron and photon with the requirment that at high temperature thermal masses go to that of corresponding perturbative results and do the calculation self-consistently. We further compare our results with previous results.  相似文献   

14.
15.
Ganeev  R. A.  Alnaser  A. S. 《Optics and Spectroscopy》2019,127(6):1155-1160
Optics and Spectroscopy - Pulsed laser ablation of different surfaces in liquid environment has broad prospects to selectively synthesize nanoparticles (NPs) with specific optical properties, as...  相似文献   

16.
This work is focused on the interpretation of the emission spectra in laser-induced plasma observed in the phase at 100–400?ns from after the laser pulse, when the discrete emission lines prevail on the continuum emission, can be important to retrieve the initial stage of expansion. A Q-switched neodymium-doped yttrium aluminum garnet laser has been used for the ablation of a lead sample in vacuum. The observed line profiles, corresponding to different species of lead, were analyzed in terms of delay time. Measurements of parameters of the produced plasmas are performed. The results obtained corroborate the importance of considering nonequilibrium effects in the initial stage of plasma expansion. Also, Stark width for two spectral lines of triply ionized lead is given.  相似文献   

17.
18.
Laser pulse modulation instabilities in partially stripped plasma   总被引:1,自引:0,他引:1       下载免费PDF全文
胡强林  刘世炳  蒋毅坚 《中国物理》2005,14(12):2546-2551
The laser pulse modulation instabilities in partially stripped plasma were discussed based on the phase and group velocities of the laser pulse and the two processes that modulation instabilities excited. The excitation condition and growth rate of the modulation instability were obtained. It was found that the positive chirp and competition between normal and abnormal dispersions play important roles in the modulation instability. In the partially stripped plasma, the increased positive chirp enhances the modulation instability, and the dispersion competition reduces it.  相似文献   

19.
Fatemeh Jokar  Esmaeil Eslami 《Optik》2012,123(21):1947-1951
Propagation of an intense short laser pulse through under-dense plasma can produce huge amplitude plasma wake field. A 3D particle in cell (PIC) method was used to simulate the wakefield generation for different laser parameters such as intensity, pulse duration, spot size and temporal pulse shape. Our study shows that the amplitude of wakefield is increased with laser intensity, but it is decreased with spot size. The results for pulse shape and pulse duration depend on their optimum values.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号