首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the wetting characteristics of untreated and plasma-treated polyurethane thin films were investigated. The degree of wettability was investigated by measuring the contact angle formed between a liquid drop and the solid surface. The work of adhesion, interfacial free energy, spreading coefficient, and Girifalco–Good's interaction parameter changed significantly for plasma-treated polyurethane films. Both complete and partial wetting were analyzed from the spreading coefficient of liquid drops on the solid substrate.  相似文献   

2.
The Cassie and Baxter’s equation has been modified to predict wetting phenomena on a microline patterned surface with the concept of effective solid-liquid interfacial energy. This interfacial energy was deduced from the total energy barrier at a metastable equilibrium and Helmholtz free energy. The contact angle predicted by the modified equation is reasonably close to the experimental data for the microline patterned surface.  相似文献   

3.
徐威  兰忠  彭本利  温荣福  马学虎 《物理学报》2015,64(21):216801-216801
微小液滴在不同能量表面上的润湿状态对于准确预测非均相核化速率和揭示界面效应影响液滴增长微观机理具有重要意义. 通过分子动力学模拟, 研究了纳米级液滴在不同能量表面上的铺展过程和润湿形态. 结果表明, 固液界面自由能随固液作用强度增加而增加, 并呈现不同液滴铺展速率和润湿特性. 固液作用强度小于1.6的低能表面呈现疏水特征, 继续增强固液作用强度时表面变为亲水, 而固液作用强度大于3.5的高能表面上液体呈完全润湿特征. 受微尺度条件下非连续、非对称作用力影响, 微液滴气液界面存在明显波动, 呈现与宏观液滴不同的界面特征. 统计意义下, 微小液滴在不同能量表面上铺展后仍可以形成特定接触角, 该接触角随固液作用强度增加而线性减小, 模拟结果与经典润湿理论计算获得的结果呈现相似变化趋势. 模拟结果从分子尺度为核化理论中的毛细假设提供了理论支持, 揭示了液滴气液界面和接触角的波动现象, 为核化速率理论预测结果和实验测定结果之间的差异提供了定性解释.  相似文献   

4.
The interfacial energy of nanomaterials can be decreased by grain-boundary wetting. The most effective is grain-boundary wetting by a chemically compatible melt in the two-phase area of the phase diagram, where the solid and melt are in equilibrium. The possibility of the thermodynamically stable solid/melt nanocomposite existing in the two-phase area of the phase diagrams where the solid and melt are in equilibrium is shown. The text was submitted by the author in English.  相似文献   

5.
《Surface Science Reports》2014,69(4):325-365
A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, wetting has been studied using contact angles of drops on solids for more than 200 years, the question remains unanswered: Is wetting of a rough and chemically heterogeneous surface controlled by the interactions within the solid/liquid contact area beneath the droplet or only at the three-phase contact line? After the publications of Pease in 1945, Extrand in 1997, 2003 and Gao and McCarthy in 2007 and 2009, it was proposed that advancing, receding contact angles, and contact angle hysteresis of rough and chemically heterogeneous surfaces are determined by interactions of the liquid and the solid at the three-phase contact line alone and the interfacial area within the contact perimeter is irrelevant. As a consequence of this statement, the well-known Wenzel (1934) and Cassie (1945) equations which were derived using the contact area approach are proposed to be invalid and should be abandoned. A hot debate started in the field of surface science after 2007, between the three-phase contact line and interfacial contact area approach defenders. This paper presents a review of the published articles on contact angles and summarizes the views of the both sides. After presenting a brief history of the contact angles and their measurement methods, we discussed the basic contact angle theory and applications of contact angles on the characterization of flat, rough and micropatterned superhydrophobic surfaces. The weak and strong sides of both three-phase contact line and contact area approaches were discussed in detail and some practical conclusions were drawn.  相似文献   

6.
The dimensional dependence of the angle of solid surface wetting by a small drop on the latter’s size R and radius of the wetting outline r is considered. Numerical values of specific linear energy γ?(r) and line tension σ r (r) of the wetting outline are calculated for a nanometer tin drop-substrate surface-aluminum film system. It is shown that wetting angle θ(R,r) in the drop-substrate surface system increases as the wetting outline’s radius decreases.  相似文献   

7.
Wetting of structured or imprinted surfaces which leads to a variety of different morphologies such as droplets, channels or thin films is studied theoretically using the general framework of surface or interface thermodynamics. The first variation of the interfacial free energy leads to the well-known Laplace equation and a generalized Young equation which involves spatially dependent interfacial tensions. Furthermore, we perform the second variation of the free energy for arbitrary surface patterns and arbitrary shape of the wetting morphology in order to derive a new and general stability criterion. The latter criterion is then applied to cylindrical segments or channels on homogeneous and structured surfaces. Received 4 August 1999  相似文献   

8.
The interfacial segregation and the free energy of segregation for solid/liquid interfaces between binary solutions are computed for the (111) boundary of face-centered-cubic crystals. A lattice-liquid interfacial model and pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. It is concluded that the zone of compositional transition across the interface is generally a few atomic layers in width and is moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions. Master plots are presented for predicting the segregation and interfacial free energies in general binary systems.  相似文献   

9.
本文建立了固体表面上静止液滴的势能方程,根据能量最小化原理,当系统总势能取得最小值时,液滴将处于平衡状态.采用有限元方法,将初始自由液面离散化,通过曲面上节点的虚拟位移,改变自由液面的拓扑结构,使系统总势能取得最小值,从而得到静止液滴的形状.并应用该方法对均质表面和梯度表面能材料表面上的液滴界面进行了数值模拟,得到了均质材料表面和梯度表面能材料表面上静止液滴的界面形状及分布.  相似文献   

10.
基于Wenzel模型的粗糙界面异质形核分析   总被引:1,自引:0,他引:1       下载免费PDF全文
郑浩勇  王猛  王修星  黄卫东 《物理学报》2011,60(6):66402-066402
异质形核是形核发生的主要形式. 经典形核理论对基底界面作了理想化平面假设,然而实际异质形核体系中理想平直的固体界面是不存在的,这导致了异质形核描述与实际情况的偏差. 考察了固相晶胚在非平整界面上的异质形核过程,基于Wenzel润湿模型,分析了非理想界面的粗糙度因子对固相晶胚形核功的影响规律. 结果表明:当基底与晶核之间的本征润湿角小于90°时,基底界面越粗糙越有利于形核;本征润湿角大于90°时,基底界面越粗糙越不利于形核. 同时,游离晶胚在基底上润湿是球冠晶胚形成的重要途径,粗糙界面润湿过程中界面自由能的 关键词: 异质形核 粗糙界面 Wenzel模型 润湿过程  相似文献   

11.
The molecular scales behavior of interfacial water at the solid/liquid interfaces is of a fundamental significance in a diverse set of technical and scientific contexts,ranging from the efficiency of oil mining to the activity of biological molecules.Recently,it has become recognized that,both the physical interactions and the surface morphology have significant impact on the behavior of interfacial water,including the water structures as well as the wetting properties of the surface.In this review,we summarize some of recent advances in the atom-level pictures of the interfacial water,which exhibits the ordered character on various solid surfaces at room or cryogenic temperature.Special focus has been devoted to the wetting phenomenon of"ordered water monolayer that does not completely wet water"and the underlying mechanism on model and some real solid surfaces at room temperature.The possible applications of this phenomenon are also discussed.  相似文献   

12.
The influence of substrate roughness on the wetting scenario of adsorbed van der Waals films is investigated by theory and experiment. Calculating the bending free energy penalty of a solid sheet picking up the substrate roughness, we show that a finite roughness always leads to triple-point wetting reducing the widths of the adsorbed solid films considerably as compared to that of smooth substrates. Testing the theory against our experimental data for molecular hydrogen adsorbed on gold, we find quantitative agreement.  相似文献   

13.
The influence of chain lengths on interfacial performances of polyarylacetylene (PAA)/silica glass composites was studied. In order to obtain different chain lengths on substrates, methyltrimethoxysilane, propyltrimethoxysilane, octyltrimethoxysilane and dodecyltrimethoxysilane were grafted onto silica glass surface. Topographies of silica glass surface and the wetting ability of PAA resin on silica glass surface were characterized by atomic force microscopy (AFM) and surface free energy along with contact angles, respectively. At the same time, the interfacial adhesion was evaluated by shear strength testing. The failure mechanisms of composites were also analyzed by fracture morphologies. The results of the study indicate that with chain lengths of coupling agents on silica glass surface increasing, interfacial shear strengths of PAA/silica glass composites increase, while the wetting ability of PAA resin on silica glass surface decreases. The main mechanism for the improvement of the interfacial adhesion is physical entanglement interaction between the chain of coupling agent and the chain of PAA resin.  相似文献   

14.
Video images of drops colliding with solid surfaces shown by Rioboo et al. (2002) reveal that, for large drop velocities, the drops flatten and form a ring structure before receding and, in some cases, rebounding from the surface. They described the sequence of events in terms of four distinct regimes. During the initial kinematic phase, the dimensionless wetting radius of the drop follows a universal form if the drop Weber and Reynolds numbers are sufficiently large. In the second phase, the drop becomes highly flattened and the values of the Weber and Reynolds numbers influence the time evolution of the dimensionless wetting radius and its maximum value. This is followed by a third phase in which the wetting radius begins to decrease with time and the wettability of the surface influences the dynamics. This paper presents simulation results for the early stages of drop impact and spreading on a partially wetting solid surface. The simulations were performed with a modified version of the lattice Boltzmann method (LBM) developed by Inamuro et al. (2004) for a liquid-gas density ratio of 1000. The Inamuro et al. version of the LBM was modified by incorporating rigid, no-slip boundary conditions and incorporating a boundary condition on the normal derivative of the order parameter to impose the desired equilibrium contact angle.  相似文献   

15.
The specific excess free energy and disjoining pressure in a wetting layer of nonpolar liquid on the surface of a solid spherical particle have been calculated on the basis of thermodynamic perturbation theory. The calculation results are compared with the data for a flat interface, obtained both experimentally and within the quasi-thermodynamic approach. The stability of the liquid layer on the convex surface is analyzed using the concept of reduced disjoining pressure.  相似文献   

16.
The interaction of liquid and solid aluminum with the graphene and graphite surfaces is studied using the density functional theory and a molecular dynamics simulation. The Morse potential is parameterized using the results of ab initio calculations in order to describe the interaction between aluminum and carbon atoms. This potential is used to investigate the interaction of a molten aluminum drop with the (0001) graphite surface theoretically. The properties of the free aluminum melt surface and the contact surface formed upon wetting graphite by the molten drop are calculated. The calculation results agree well with the available experimental data.  相似文献   

17.
亲水性微观粗糙表面润湿状态转变性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘思思  张朝辉  何建国  周杰  尹恒洋 《物理学报》2013,62(20):206201-206201
以亲水性微观粗糙表面上不同几何形貌及分布的微柱阵列为对象, 讨论了液滴在亲水性粗糙表面上的润湿过程以及润湿状态的转变阶段. 从能量角度分别考察了微观粗糙结构几何形貌及分布、微柱几何参数、固体表面亲水性、接触角滞后作用等因素对液滴润湿状态转变的影响规律. 研究发现: 在亲水粗糙表面, 正方形微柱呈正六边形阵列分布时, 液滴更容易形成稳定的Cassie状态, 或者液滴仅发生Cassie状态向中间浸润状态的转变; 与此同时, 减小微柱间距、增大方柱宽度或圆柱直径、增大微柱高度、增强固体表面的亲水性将有利于液滴处于稳定的Cassie状态, 或阻止润湿状态向伪-Wenzel或Wenzel状态转变; 然而, 当液滴处于Cassie状态时, 较小的固-液界面面积分数或减弱固体表面亲水性能均有利于增大液滴的表观接触角, 因此在亲水表面设计粗糙结构时应综合考虑润湿状态稳定性和较大表观接触角两方面因素; 此外, 接触角滞后作用对于液滴状态的稳定性以及疏水性能的实现具有相反作用的影响. 研究结果为液滴在亲水表面获得稳定Cassie状态的粗糙结构设计方法提供了理论依据. 关键词: 亲水表面 微观粗糙结构 表面自由能 润湿状态转变  相似文献   

18.
When a liquid drop contacts a wettable surface, the liquid spreads over the solid to minimize the total surface energy. The first moments of spreading tend to be rapid. For example, a millimeter-sized water droplet will wet an area having the same diameter as the drop within a millisecond. For perfectly wetting systems, this spreading is inertially dominated. Here we identify that even in the presence of a contact line, the initial wetting is dominated by inertia rather than viscosity. We find that the spreading radius follows a power-law scaling in time where the exponent depends on the equilibrium contact angle. We propose a model, consistent with the experimental results, in which the surface spreading is regulated by the generation of capillary waves.  相似文献   

19.
王陶  李俊杰  王锦程 《物理学报》2013,62(10):106402-106402
利用多相场模型模拟了液-固两相体系中固相颗粒的粗化过程, 分析了界面润湿性及固相体积分数对粗化指数、粗化速率及颗粒尺寸分布的影响.结果表明, 不同固相体积分数下粗化指数基本不变, 但粗化速率常数及尺寸分布与固相体积分数及界面润湿性密切相关.在完全润湿条件下, 随着固相体积分数的增加, 粗化速率常数逐渐增大; 而非完全润湿条件下, 随着固相体积分数的增加, 粗化速率常数增大速度变缓, 且当润湿性较低、 固相分数较大时, 粗化速率常数还将随体积分数的增加而下降. 此外, 模拟结果表明各种润湿条件下颗粒的尺寸分布均随着固相分数增加而变宽, 分布峰值降低, 但非完全润湿条件下峰值下降变缓.模拟结果为理解不同实验观测结果之间的分歧提供了依据. 关键词: 粗化 相转变 相场法 润湿性  相似文献   

20.
The wetting of solid surfaces can be modified by altering the surface free energy balance between the solid, liquid, and vapor phases. Here we show that liquid dielectrophoresis induced by nonuniform electric fields can be used to enhance and control the wetting of dielectric liquids. In the limit of thick droplets, we show theoretically that the cosine of the contact angle follows a simple voltage squared relationship analogous to that found for electrowetting on dielectric. Experimental observations confirm this predicted dielectrowetting behavior and show that the induced wetting is reversible. Our findings provide a noncontact electrical actuation process for meniscus and droplet control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号