首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generation of third harmonic of CO2 laser radiation has been obtained in a type-II, ϑ=57° cut 9 mm thick AgGaSe2 crystal for the first time by sum-frequency-mixing of the fundamental with its second harmonic, the latter being obtained using another type-I, ϑ=55° cut 11 mm thick AgGaSe2 crystal. The energy conversion efficiencies obtained for second harmonic and third harmonic generations are 6.3% and 2.4% respectively with the input fundamental pump power density of 5.9 MW/cm2 only. The wavelength of the fundamental CO2 laser radiation used for the generation of harmonics is 10.6 μm, P(20) line. A compact TEA CO2 laser source has been built in the laboratory.  相似文献   

2.
Double-ended experimental arrangement using a small tunable TEA CO2 laser and a retroreflector was employed for differential absorption measurements of ethylene, freon 12 and ammonia concentrations in the atmospheric air in the distant sample chamber. Telescope collected return radiation was detected with a pyroelectric detector. Good agreement between remotely and in-situ measured concentrations was obtained. The system sensitivity to investigated gases was found to be of the order of several ppb-kilometers.  相似文献   

3.
A mathematical model, based on the Landau–Teller equations of six-temperature model for the CO2–N2–He–CO system, to describe the process of dynamic emission in tunable TEA CO2 lasers is introduced. In this model, the Landau–Teller equations are rewritten with regard to fine longitudinal mode frequencies in the laser resonator. These revised equations can be utilized to estimate the laser output spectra as well as other laser output pulse parameters. Examples are given to show the modeling results of non-tunable, grating tuned or injection-locking TEA CO2 lasers.  相似文献   

4.
A proposal of new grating tuning compound unstable resonator is presented. This new type of unstable resonator is profitable for generating single transverse mode, high energy, high-average power tunable laser radiation from TEA CO2 laser and other gas lasers.  相似文献   

5.
探测大气中CO2的Raman激光雷达   总被引:1,自引:0,他引:1       下载免费PDF全文
基于大气激光后向散射光谱,研究和设计了探测大气CO2浓度的Raman激光雷达,其发射机采用Nd∶YAG激光的三倍频354.7nm作为工作波长,发射的单脉冲能量350mJ,重复频率20Hz;接收机采用了光电倍增管(量子效率25%)和光子计数器(计数速率200MHz),探测CO2的Raman散射371.66nm(频移1285cm-1)信号,(1小时累加)近地面2.5km以内信噪比不小于8.采用组合滤光片来抑制强的354.7nm Mie-Rayleigh后向散射和氧气375.4nm Raman后向散射对信号的严重干扰. 比较分别来自大气CO2和参考气体N2的Raman后向散射回波,可反演出大气中CO2的相对浓度. 关键词: 大气光学 激光雷达 Raman散射光谱 参考气体 Mie-Rayleigh散射  相似文献   

6.
利用可调谐TEACO2激光,在GaAs-Al界面上采用光栅耦合首次从实验上获得了红外表面二次谐波的共振激励输出,并研究了该界面上红外表面二次谐波的某些特性。理论值与实验值符合较好。 关键词:  相似文献   

7.
《Infrared physics》1987,27(5):317-326
An optically-pumped 385-μm D2O laser has been constructed for Thomson scattering ion temperature measurements in tokamak plasma. Stable single mode and stable tunable (over ±1 GHz) operation of the pump 9R (22) TEA CO2 laser is performed by using an intracavity ZnSe etalon which is temperature-controlled within ±0.01°C. The saturation broadening with D2O absorption line is observed for the first time using the tunable 9R (22) CO2 laser. The pressure broadening coefficient of the N2O absorption line is measured to be 7.6 MHz/torr using the ±1 GHz tunable 385-μm D2O Raman laser. At 385 μm, an output quantum efficiency as high as 21% is obtained.  相似文献   

8.
Optical properties of orange phased HgGa2S4 crystal is investigated. Generation of tunable middle infrared radiation by second harmonic of tunable CO2 laser radiation has been demonstrated. Second harmonic conversion efficiency with respect to other infrared crystal has also been discussed.  相似文献   

9.
Infrared multiple-photon dissociation (IRMPD) of CDCl3 was studied using a tunable TEA CO2 laser. Effects of number of irradiation pulses, wavelength and energy fluence as well as of sample pressure on the reaction yield are reported.  相似文献   

10.
Atmospheric carbon dioxide (CO2) is one of the main contributors to the greenhouse effect. A global monitoring of CO2 from space is foreseen as a key issue to quantify its sources and sinks at a regional scale and to better predict future levels of CO2 and their effect on climate change. Differential Absorption Lidar (DiAL) is a promising and novel spectroscopic technique for remote sensing CO2 spatial and temporal concentration distribution with a high level of accuracy. However, a precise knowledge of spectroscopic parameters of CO2 molecular transitions and their dependence with temperature and pressure is required for reducing the uncertainty on DiAl measurements. Hence, to support remote sensing of carbon dioxide in the troposphere, we report on the accurate determination of air pressure-induced shift coefficients for eight absorption lines belonging to the R branch of (2001)III←(0000)I band of CO2 at 2.05 μm. Purposely, a high-resolution tunable diode laser absorption spectrometer (TDLAS) coupled to a cryogenically cooled optical cell was implemented. From these measurements, we have further determined the temperature-dependencies of the air pressure-induced shift coefficients.  相似文献   

11.
Noncollinear four photon mixing of two TEA CO2 laser beams in germanium at room temperature has been used to obtain phase-matched generation of step tunable radiation in the 8.7 μm region which is of interest for the uranium isotope separation. Using an 8.3 cm long crystal of germanium, peak output power of ≈10kW (corresponding to 1 mJ per pulse) was obtained at 8.7 μm with 3 MW peak input power from each of the two CO2 lasers operating at 9.6 μm and 10.6 μm.  相似文献   

12.
In this research, directed toward using differential absorption lidar (DIAL) for measuring concentrations of pollutant gases, a device for rapidly tuning a transversely excited atmospheric-pressure (TEA) CO2 laser is presented. It is shown that it is possible to utilize a rotating six-sided scanning mirror and a fixed diffraction grating to rapidly switch wavelength over randomly selected lasing transitions in the 9–11 μm region of the spectrum. The scanning mirror and an optical encoder are driven by a hysteresis synchronous motor at a speed of 1500 rpm. A surface-wire-corona preionization was utilized in a cavity. The laser system is highly automated with microprocessor-controlled laser line selection. Single-branch emission at two wavelengths with time interval ⩽10 ms has been obtained from a single cavity TEA CO2 laser. An accurate line selection has been demonstrated in over 40 transitions at a pulse repetition frequency of up to 100 Hz. The laser energy at first-order couple output was up to 20 mJ per pulse and the pulse width is about 60 ns in an active volume of 36 cm3.  相似文献   

13.
A miniature tunable TEA CO2 laser using isotope 13C16O2 as the active medium is developed to extend the spectral range of CO2 lasers for further application. The optimization of the energy parameters of the tunable TEA 13C16O2 laser and the same laser using 12C16O2 are studied. When a gas mixture (13C16O2: N2: He = 1: 1: 3) at a total pressure of 6.4 × 104 Pa is used, the TEA 13C16O2 laser of a 45-cm3 active volume obtains 51 emission lines in the [0001–1000] and [0001–0200] bands. The maximum pulse energy of the TEA 13C16O2 laser is about 357 mJ. The same laser using the conventional gas mixture (12C16O2: N2: He = 1: 1: 3) at a pressure of 6.66 × 104 Pa is measured to obtain 69 laser emission lines and the maximum pulse energy of laser radiation is about 409 mJ.  相似文献   

14.
In order to obtain short tail-free output laser pulses from a TEA CO2 laser, parametric study of the laser operation with CO2/H2 and CO2/He binary gas mixtures containing high CO2 concentrations was carried out. A small scale UV preionized short delay time TEA CO2 laser was employed. In terms of the maximum extractable output pulse energy and power, the more conventional CO2/He gas mixture was found to be inferior in comparison with the CO2/H2 mixture proposed here.  相似文献   

15.
Dumitras  D. C.  Dutu  D. C.  Matei  C.  Cernat  R.  Banita  S.  Patachia  M.  Bratu  A. M.  Petrus  M.  Popa  C. 《Laser Physics》2011,21(4):796-800
Photoacoustic spectroscopy represents a powerful technique for measuring extremely low absorptions independent of the path length and offers a degree of parameter control that cannot be attained by other methods. We report precise measurements of the ammonia absorption coefficients at the CO2 laser wavelengths by using a photoacoustic (PA) cell in an extracavity configuration and we compare our results with other values reported in the literature. Ammonia presents a clear fingerprint spectrum and high absorption strengths in the CO2 wavelengths region. Because more than 250 molecular gases of environmental concern for atmospheric, industrial, medical, military, and scientific spheres exhibit strong absorption bands in the region 9.2–10.8 μm, we have chosen a frequency tunable CO2 laser. In the present work, ammonia absorption coefficients were measured at both branches of the CO2 laser lines by using a calibrated mixture of 10 ppm NH3 in N2. We found the maximum absorption in the 9 μm region, at 9R(30) line of the CO2 laser. One of the applications based on the ammonia absorption coefficients is used to measure the ammonia levels in exhaled human breath. This can be used to determine the exact time necessary at every session for an optimal degree of dialysis at patients with end-stage renal disease.  相似文献   

16.
A tunable single-mode stabilized CO2 TEA laser is used to optically pump D2O vapour. Two D2O absorption lines separated from the CO2 P(32) line centre by 0.6 GHz and -1.4 GHz are found to produce respective FIR emission at 120 μ and 66 μ. Superradiant output efficiences of up to 70% of the the theoretical maximum are observed. Laser cavity operation of the two D2O emission lines was also observed with quantum conversion efficiencies of 6.8% (66 μ) and 14.5% (120 μ) when calculated for the active lasing volume.  相似文献   

17.
Sixteen FIR laser lines have been observed by optical pumping of CD3OH with a tunable single-mode TEA CO2 laser. Particularly large outputs are observed at 70.6 μm (10 P20 pump), 69.9 μm (10 R22), 42.3 μm (10 R6), and 105.3 μm and 41.7 μm (10 R8).  相似文献   

18.
An airborne laser system for remote sensing has been developed and tested at flight altitudes from 500 to 1200 m. The system is based on two continuous-wave CO2 lasers (output 3 W), tunable to different wavelengths, and detects the laser radiation scattered back from earth by heterodyne reception. The feasibility of the heterodyne reception technique under aircraft environment conditions was demonstrated, and man-made SF6 clouds and different types of uncovered minerals were traced. The data obtained indicate that the measuring range of the system can be increased to satellite distance by using a larger telescope and a more powerful laser and by reducing the electrical bandwidth. The word was supported by the German Ministry of Science and Technology, represented by DFVLR-BPT under contract number 01 TL 026-AK/RT/WRT 2074.  相似文献   

19.
非标定波长调制吸收光谱气体测量研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李宁  翁春生 《物理学报》2011,60(7):70701-070701
为消除可调谐激光调制吸收光谱气体测量技术对于标定过程的依赖,研究了二次谐波信号的非标定波长调制气体测量方法.通过对测量的二次谐波线型进行分析,给出相同工况下二次谐波模拟信号,并利用测量与模拟二次谐波信号进行线性拟合直接计算气体浓度.实验室内采用非标定波长调制气体测量方法,利用 6336.24 cm-1处特征吸收谱线对10 cm长气体吸收池内的CO2进行了测量.结果表明,非标定波长调制气体测量方法可适应各种不同条件,适合于现场气体在线测量.当调制系数在1.8—3. 关键词: 波长调制 二次谐波 吸收光谱 半导体激光器  相似文献   

20.
Selective laser isotope separation by TEA CO2 laser often needs short tail-free pulses. Using laser mixtures having very little nitrogen almost tail free laser pulses can be generated. The laser pulse characteristics and its gas lifetime is an important issue for long-term laser operation. Boltzmann transport equation is therefore solved numerically for TEA CO2 laser gas mixtures having very little nitrogen to predict electron energy distribution function (EEDF). The distribution function is used to calculate various excitation and dissociation rate of CO2 to predict laser pulse characteristics and laser gas lifetime, respectively.Laser rate equations have been solved with the calculated excitation rates for numerically evaluated discharge current and voltage profiles to calculate laser pulse shape. The calculated laser pulse shape and duration are in good agreement with the measured laser characteristics. The gas lifetime is estimated by integrating the equation governing the dissociation of CO2. An experimental study of gas lifetime was carried out using quadrapole mass analyzer for such mixtures to estimate the O2 being produced due to dissociation of CO2 in the pulse discharge. The theoretically calculated O2 concentration in the laser gas mixture matches with experimentally observed value. In the present TEA CO2 laser system, for stable discharge the O2 concentration should be below 0.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号