共查询到20条相似文献,搜索用时 15 毫秒
1.
A class of models of porous media based on the concept of an ensemble of pores with a certain distribution of the main geometric parameters (for example, the pore size) is considered. The cases of pores saturated with single-and two-phase multicomponent liquid mixtures are investigated. The properties of equilibrium states of the mixture are derived from the minimum free energy condition and the transfer laws from the decreasing free energy condition. The hydrodynamic connectivity of the pores is described by two types of kernels: one describes the spatial connectivity and the other the connectivity in an elementary macrovolume. Analytically and numerically, the one-dimensional problems of establishment of a steady-state regime, propagation of a passive admixture, and two-phase flow (an analog of the Buckley-Leverett problem) are investigated. A relationship between the models in question and relaxational filtration models is demonstrated. A simple model of capillary hysteresis related with the non-monotonicity of the pore area to volume ratio function is proposed. 相似文献
2.
3.
4.
S. Bhattacharya M. N. Azese S. Singha 《Theoretical and Computational Fluid Dynamics》2017,31(2):137-157
This article addresses a classical fluid mechanics problem where the effect of capillary action on a column of viscous liquid is analyzed by quantifying its time-dependent penetrated length in a narrow channel. Despite several past studies, a rigorous mathematical formulation of this inherently unsteady process is still unavailable, because these existing works resort to a crucial assumption only valid for mildly transient systems. The approximate theories use an integral approach where the penetration is described by equating total force acting on the domain to rate of change of total momentum. However, while doing so, the viscous resistance under temporally varying condition is assumed to be same as the resistance created by a quasi-steady velocity profile. Thus, leading order error appears due to such approximation which can only be true when the variation in time is not strong enough causing negligible transient deviation in the hydrodynamic quantities. The present paper proposes a new way to solve this problem by considering the unsteady field itself as an unknown variable. Accordingly, the analysis applies an eigenfunction expansion of the flow with unknown time-dependent amplitudes which along with the unsteady intrusion length are calculated from a system of ordinary differential equations. A comparative exploration identifies the situation for which the integral approach and the rigorous technique based on eigenfunction expansion deviate from each other. It also reveals that the two methods differ substantially in short-time dynamics at the initial stage. Then, an asymptotic perturbation shows how the two sets of results should coincide in their long-time behavior. In this way, the findings will provide a comprehensive understanding of the physics behind the transport phenomenon. 相似文献
5.
Vlasios Leontidis Jie Chen Lucien Baldas Stéphane Colin 《Heat and Mass Transfer》2014,50(8):1065-1080
A numerical procedure has been developed for modeling 2D thermal creep flows with Fluent®. Complete first order velocity slip, including thermal creep and walls curvature effects, as well as temperature jump, boundary conditions, are implemented via C routines. After validation on benchmark flows, the technique is used for designing a Knudsen pump with curved microchannels and it is demonstrated that this micropump can be efficient in the slip flow regime. 相似文献
6.
7.
Using Green's function method, analytical solutions for transient fully developed natural convection in open-ended vertical circular and two-parallel-plate channels are presented. Different fundamental boundary conditions for these two configurations have been investigated and the corresponding fundamental solutions are obtained. These fundamental solutions may be used to obtain solutions satisfying more general thermal boundary conditions. In terms of the obtained unsteady temperature and velocity profiles, the transient volumetric flow rate, mixing cup emperature and local nusselt number are estimated.Zusammenfassung Für oben und unten offene vertikale Kanäle mit Kreisquerschnitt bzw. als Parallelplattenanordnung werden unter Verwendung der Methode der Greenschen Funktionen analytische Lösungen für die nichtstationäre, vollausgebildete, natürliche Konvektion gefunden und zwar unter Zugrundelegung verschiedener Fundamental-Randbedingungen bezüglich beider Konfigurationen. Die so ermittelten Fundamentallösungen können zur Gewinnung von Lösungen für allgemeine Randbedingungen dienen. Der zeitlich veränderliche Volumenstrom, die Mischtemperatur und die Nusselt-Zahl werden mit Bezug auf die erhaltenen nichtstationären Profile für Temperatur und Geschwindigkeit näher analysiert.
Analytische Lösung für die nichtstationäre vollausgebildete laminare freie Konvektion invertikalen KanälenNomenclature a local heat transfer coefficient based on the area of the heat transfer surface,q/(T w –T 0)=±(T/y)w/(Tw–T0), minus and plus signs apply respectively for heating and cooling in case of parallel-plate channel and vice versa in case of a tube - average heat transfer coefficient over the channel - c p specific heat of fluid at constant pressure - f volumetric flow rate, for circular channels and or two-parallel-plate channels - F dimensionless volumetric flow rate,f/(2lvGr*) for circular channels forfw/(lvGr *) for two-parallel-plate channels - g gravitational body force per unit mass (acceleration) - G Green's function - Gr Grashof number,±g(T w–T0)w3/v2 in case of an isothermal boundary of±gqw 4/2kv2 in case of a uniform heat flux (UHF) on the heat transfer boundary, the plus and minus signs apply to upward (heating) and downward (cooling) flows, respectively. ThusGr is a positive number in both cases. - Gr * modified Grashof number,wGr/l - h heat gained or lost by fluid from the entrance up to a particular elevation in the channel, 0 fc p(T m–T 0) for all cases - J 0 Bessel function of zero order - k thermal conductivity of fluid - l height of channel - L dimensionless height of channel,1/Gr * - Nu local Nusselt number,|a| w/k - average Nusselt number, - p pressure of fluid inside the channel at any cross-section - p pressure defect at any point,p–p s - p 0 pressure of fluid at the channel entrance - p s hydrostatic pressure, 0 gz where the minus and plus signs are for upward (heating) and downward (cooling) flows, respectively - p dimensionless pressure defect at any point(pw 4)/(0 l 22 Gr 2) - Pr Prandtl number,c p/k - q heat flux at the heat transfer surface,q=±k(T/y)w where the minus and plus signs are, respectively, for cooling and heating in case of circular pipe and vice versa in case of a parallel-plate channel - Ra Rayleigh number,GrPr - Ra * modified Rayleigh number,Gr *Pr - t time - T fluid temperature at any point - T m mixing-cup (mixed-mean) temperature over any cross section, for circular channels, and for two-parallelplate channels - T 0 initial and channel-inlet fluid temperature - T w temperature of the heat-transfer wall - u axial velocity component at any point - U dimensionless axial velocity,uw 2/(lvGr*) - w radius of circular tube or width (between plates) of parallel-plate channel - y radial or transverse coordinate - y dimensionless radial or transverse coordinate,y/w - z axial coordinate - Z dimensional axial coordinate,z/(lGr *) Greek symbols constant appears in Eq. (8) - parameter appears in Eq. (9) which equals the integration of with respect to or volumetric coefficient of thermal expansion - n eigenvalues - parameter appears in Eq. (7) - n eigenvalues - parameter appears in Eq. (12) - n eigenvalues - parameter appears in Eq. (9) - dimensionless temperature,(T–T 0)/(Tw–T0) in case of an isothermal heat transfer boundary and(T–T 0)/(qw/2k) for UHF boundary - m dimensionless mixing cup temperature,(T m–T0)/(Tw–T0) in case of an isothermal heat transfer boundary and(T m–T0)/(qw/2k) for UHF boundary - w dimensionless temperature of the heat-transfer wall, equals unity in case of an isothermal heat transfer boundary and(T w–T0)/(qw/2k) for a UHF boundary - n eigenvalues - dynamic viscosity of fluid - kinematic viscosity of fluid, /0 - fluid density at temperatureT,0[1–(T–T 0)] - 0 fluid density atT 0 - demensionless time,tk/(cw2) 相似文献
8.
G. P. Celata M. Cuno G. E. Farello A. Mariani
S. Solimo
《Experimental Thermal and Fluid Science》1991,4(6):737-746Experimental work was carried out to determine the flow pattern map in vertical heated pipes under steady-state and transient conditions, using Freon 12 in forced convective flow as working fluid and optical probes for the measurements Existing maps are based on adiabatic tests, steady-state conditions, and fluids different from Freon 12. Signals from optical probes (whose response is based on the variations in fluid refractive index) are analyzed in terms oflocal void fraction, using either the probability density function (PDF) or the ratio between the average and maximum values of the signal. From the analysis of the experimental measurements the definition of a map for annular and intermittent flow regimes was achieved. The map turned out to be in good agreement with the Weisman and Kang map developed in adiabatic, steady-state conditions Qualitative results for the transient conditions are also presented. 相似文献
9.
We explore a process for identifying the topology of networks. We find that it is possible to estimate the accurate topological structure of synchronous networks by analyzing their transient processes. Some novel conditions are given to ensure the uncertain connection topology approach to the true value. Our examples further illustrate the feasibility of these proposed methods. 相似文献
10.
《International Journal of Multiphase Flow》2005,31(1):69-92
A theoretical model of a two-phase air/dispersed water spray flow in an icing wind tunnel is presented here. The mutual interactions taking place within the dispersed phase known as binary droplet collisions, as well as gravitational sedimentation are considered. Where large droplets and low air stream velocities are concerned, the effect of gravity on droplet dynamics is considerable. Gravity causes the vertical deflection of droplet trajectories and an increase in liquid water content (LWC) in the bottom half of the wind tunnel. Droplet collision tends to influence the size, trajectory and velocity of droplets thus affecting the characteristics of the flow and, thereby, the formation of ice on the object placed in the wind tunnel. The present model simulates droplet motion and droplet collision in an icing wind tunnel, where it may be observed that bouncing, stable coalescence, or coalescence followed by separation are the possible outcomes of collision. In the theoretical examination, firstly, the effect of gravity on the vertical deflection of droplet trajectories and on the vertical distribution of the LWC near the icing object are taken into account, while droplet collision is disregarded. Then both factors are considered and collision outcome is determined together with the size and velocity of post-collision droplets. The initial droplet size distribution (DSD), as it occurs at the nozzle outlet, is estimated by a curve in accordance with previous experimental results. The DSD is determined theoretically near the icing object, which makes it possible to calculate the median volume diameter and the LWC of the aerosol cloud. The simulation results with regard to the LWC are compared to the experimental results obtained in this research and a satisfactory qualitative coincidence is to be found between them. 相似文献
11.
Yu. S. Bortnikov V. A. Nesterov I. B. Rubashov 《Journal of Applied Mechanics and Technical Physics》1968,9(4):511-515
Results are presented from theoretical and experimental studies of a pump for handling insulating liquids. Various types of ionizer are compared.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 4, pp. 154–158. July–August, 1968. 相似文献
12.
An equation of state for a shape memory alloy is derived using a formalized approach to the construction of finite-deformation constitutive equations for complex media. The obtained equations were tested for coupled elastic-inelastic boundary-value problems of deformation of a sample of a shape-memory during forward and reverse martensitic transformations. 相似文献
13.
In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat conducting and non-viscous mixture described by an Eulerian set of evolution equations. The model is derived from the kinetic theory in a hydrodynamic regime of a fast chemical reaction. The reactive source terms are explicitly computed from the kinetic theory and are built in the model in a proper way. For both time-dependent problems, we first derive the appropriate dispersion relation, which retains the main effects of the chemical process, and then investigate the influence of the chemical reaction on the properties of interest in the problems studied here. We complete our study by developing a rather detailed analysis using the Hydrogen–Chlorine system as reference. Several numerical computations are included illustrating the behavior of the phase velocity and attenuation coefficient in a low-frequency regime and describing the spectrum of the eigenmodes in the small wavenumber limit. 相似文献
14.
A. A. Kashevarov 《Journal of Applied Mechanics and Technical Physics》2005,46(1):77-84
Hydrodynamic and hydraulic models of water drain on swamped lands are proposed, which describe the processes of filtration and surface drain with different degrees of detail and accuracy. Based on the models of salt transfer by interacting filtration and riverbed flows, the issues of modeling the quality of subsoil and surface waters are considered.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 96–105, January–February, 2005 相似文献
15.
16.
In this work, the micro-macro approach is used to simulate the flow of dilute polymer solutions by means of a kinetic model coupled with the dynamics of a transient network. The transient network modeling is based on the original formulation, in which the kinetics of microstates describes the complexity of interactions among the macromolecules suspended in a Newtonian solvent (Rincón et al, J Non-Newton Fluid 131:64–77, 2005). The average concentration of microstates, at a given time, defines a variable maximum segment length (variable extensibility) of the molecular FENE model. The non-Newtonian contribution to the extra stress tensor is computed according to the Brownian configuration-fields method. Comparisons with the Oldroyd-B model validates its limiting behavior. Numerical results show the influence of the solvent to total viscosity ratio and shear rate, on the transient and steady rheological phenomena of complex fluids with microstates. 相似文献
17.
18.
19.
20.
Sophie A. W. Calabretto James P. Denier Trent W. Mattner 《Theoretical and Computational Fluid Dynamics》2018,32(6):821-845
When a fluid-filled container is spun up from rest to a constant angular velocity the fluid responds in such a way that the fluid–container system is ultimately in a state of rigid-body rotation. The fluid can then be said to have traversed a trajectory in phase space from a simple stable equilibrium state of no motion to another stable equilibrium representing full rigid-body rotation. This simple statement belies the fact that during this process the fluid can undergo a series of transitions, from a laminar through a transient turbulent state, before attaining the stable motion that is rigid-body rotation. Using a combination of analytical and computational methods, we focus on the dynamics resulting from an impulsive change in the rotation rate of a fluid-filled annulus, specifically, the impulsive spin-up of a stationary annulus, or the impulsive spin-down of an annulus already in a state of rigid-body rotation. We explore the initial development of the impulsively generated axisymmetric boundary layer, its subsequent instability, and the larger-scale transient features within this class of flows, allowing us to look at the effect these features have on the time it takes for the system to spin up to a steady state, or spin down to rest. 相似文献