首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Controlled nanosized TiO2 particles of 4–10 nm were synthesized by a simple hydrolysis method followed by calcination at different temperatures. These particles were investigated using X-ray diffraction (XRD), Photoacoustic/Fourier transform infrared (PA/FTIR) spectroscopy, Raman spectroscopy and electron spin resonance (ESR) spectroscopy to understand their structural properties. X-ray diffraction studies confirmed the anatase phase of the particles where as the PA/FTIR revealed the bands around 1,500 and 3,300 cm−1 due to –OH bands. ESR spectroscopic investigations carried out from 5 to 300 K indicated the presence of an ESR line at g = 2.00 emerging from radical species. It is significant to note that the intensity of the ESR line decreased as the particle size increased.  相似文献   

2.
To obtain porous TiO2 film, the precursor sol was prepared by hydrolysis of Ti isopropoxide and then complexed with trehalose dihydrate. The porous TiO2 film was fabricated by the dip-coating technique on glass substrates using this solution. The TiO2 film was calcined at 500 °C. The maximum thickness of the film from one-run dip-coating was ca. 740 nm. The film was composed of nanosized particle and pores. The porosity of the TiO2 film was increased by addition of trehalose dihydrate to the sol. The porous TiO2 films were calcined at different temperatures. The effects of calcination temperature on the microstructure of the porous TiO2 film were investigated. The porous film prepared from sol containing trehalose still kept the porous structure after calcination at 950 °C. The phase transition temperature of the film from anatase to rutile was shifted from 650 to 700 °C by addition of trehalose to the sol.  相似文献   

3.
Summary Titania-based photocatalytic materials were prepared by sol-gel method using Fe3+ and polyethyleneglycol (PEG600) as additives. Thermogravimetry (TG), differential thermal analysis (DTA) and evolved gas analysis (EGA) with MS detection were used to elucidate processes that take place during heating of Fe3+ containing titania gels. The microstructure development of the Fe2O3/TiO2 gel samples with and without PEG600 admixtures was characterized by emanation thermal analysis (ETA) under in situ heating in air. A mathematical model was used for the evaluation of ETA results. Surface area and porosity measurements of the samples dried at 120°C and the samples preheated for 1 h to 300 and 500°C were compared. From the XRD measurements it was confirmed that the crystallization of anatase took place after thermal heating up to 600°C.  相似文献   

4.
The composition and existing species ot the reaction production ot Hg ana X (X= Cl, Br and I) under different conditions, and their absorption, Rayleigh scattering (RS) and resonance Rayleigh scattering (RRS) spectra have been studied. The results show that the products exist in the form of nanoparticles as [HgX2]n aggregates under suitable conditions, and their average diameters increase with the increase of X- diameters. The diameters of [HgCI2]n, [HgBr2]n and [Hgl2]n are less than 4 nm, equal to 9 nm and 70 nm respectively. There are bathchromic shifts gradually with the increase of X- diameters in their absorption spectra. The absorption bands of [HgCI2]n and [HgBr2]n locate at ultraviolet region. However, the absorption band of [Hgl2]n is obvious in visible light region. Among three particles, only [Hgl2]n exhibits a strong RRS and its scattering peak is at 580 nm. The main reasons leading to the enhancement of resonance scattering are the large size of nanoparticle, the formation of the interface  相似文献   

5.
Silver nanoparticles well dispersed in a spherical Poly(vinylpyrollidone)(PVP) matrix were simply prepared by spray pyrolysis of aqueous solutions of AgNO3 and PVP without any reducing agent. Highly monodisperse silver particles were obtained above the initial mass ratio of PVP/AgNO3 ∼ 1 and in a certain narrow temperature range. Below the critical mass ratio the silver particles grew to larger ones polydispersely. As the ratio increased above it, they became smaller maintaining their monodispersity. The use of PVP considerably decreased the reduction temperature of the silver nitrate from 450 °C to 250 °C under the same pyrolysis conditions, due to its reducing nature. As the pyrolysis temperature increased above the decomposition temperature of PVP, the silver particles in the matrix grew to merge to a single particle while their crystallite size did not increase as much. The spherical assemblies of the silver nanoparticles were hardly disengaged even after severe washing off the matrix materials. The mechanism of the nanoparticle growth was also discussed.  相似文献   

6.
(La0.7Sr0.3)MnO3 thin films were deposited on SiO2/Si substrates by a metal-organic decomposition (MOD) method, and then Pb(Zr0.52Ti0.48)O3 (PZT) thin films were grown on (La0.7Sr0.3)MnO3-coated SiO2/Si substrates by a sol-gel method. The effects of annealing temperature on the crystalline phases, microstructures and electrical properties of the PZT films were investigated. X-ray diffraction analysis results indicated that the PZT films with a perovskite single phase could be obtained by annealing at 650°C. The dielectric constant and the remnant polarization of the PZT films increased with increasing annealing temperature. The remnant polarization and the coercive field of the films annealed at 650°C were 18.3 μC/cm2 and 35.5 kV/cm, respectively, whereas the dielectric constant and loss value measured at 1 kHz were approximately 1100 and 0.81, respectively.  相似文献   

7.
8.
Summary. Photooxidation of ethylbenzene with oxygen to give ethylbenzene hydroperoxide has been achieved in a stirred photochemical reactor that was cooled by a water system by irradiation with a 400W high-pressure mercury lamp and using TiO2 powder and metal coated TiO2. The effects of the amount of copper or silver coated on TiO2 and of the temperature on the rate of oxidation have been investigated. It is suggested that thermal cleavage of the O–O bond and photochemically generated singlet oxygen should be considered as the initiating step in a radical chain mechanism. An optimum loading of 6% Ag or 4–5% Cu was observed for photooxidation of ethylbenzene.  相似文献   

9.
Nanosized TiO2 and nano-anatase TiO2 decorated on SiO2 spherical core shells were synthesized by using a sol–gel method. The synthesized pure TiO2 nano particle and TiO2 grafted on SiO2 sphere with various ratios have been characterized for their structure and morphologies by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrophotometry (FTIR) and transmission electron microscopy (TEM). Their surface areas were measured using the BET method. The photocatalytic activity of all nanocomposites was investigated using methylene blue as a model pollutant. The synthesized TiO2/SiO2 particles appeared to be more efficient in the degradation of methylene blue pollutant, as compared to pure TiO2 particles.  相似文献   

10.
Hierarchically nanostructured, porous TiO2(B) microspheres were synthesized by a microwave-assisted solvothermal method combined with subsequent heat treatment in air. The materials were carefully characterized by scanning and transmission electron microscopy, X-ray diffraction, CO2 adsorption, and a range of spectroscopies, including Raman, infrared, X-ray photoelectron and UV-Vis spectroscopy. The hierarchical TiO2(B) particles are constructed by ultrathin nanosheets and possess large specific surface area, which provided many active sites for CO2 adsorption as well as CO2 conversion. The TiO2(B) nanostructures exhibited marked photocatalytic activity for CO2 reduction to methane and methanol. Anatase TiO2 and P25 were used as the reference photocatalysts. Transient photocurrent measurement also proved the higher photoactivity of TiO2(B) than that of anatase TiO2. In-situ infrared spectrum was measured to identify the intermediates and deduce the conversion process of CO2 under illumination over TiO2(B) photocatalyst.  相似文献   

11.
Phase separation that takes place during the formation of semi-interpenetrating polymer networks based on crosslinked polyurethane and linear polystyrene was studied by small-angle X-ray scattering and light scattering. The kinetics of the chemical reactions was followed by Fourier transform infrared spectroscopy. The occurrence of broad peaks in the X-ray scattering curves was interpreted in terms of distances between the urethane crosslinks. Small modulations on these curves were assigned to sphere-like structures with a diameter of around 5 nm which might be related to the urethane crosslink regions. Small modulations on the light-scattering curves at the beginning of styrene polymerization were assigned to spheres with diameters of around 4.5 μm, which can be related to the polystyrene-rich phase. These modulations disappear with time, which might indicate an increasing polydispersity of the domain sizes. The final morphology was found to depend on the time at which polymerization of styrene is initiated with respect to the time of gelation of polyurethane.  相似文献   

12.
Differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) were used to study the thermal behaviour of (50-x)Na2O-xTiO2-50P2O5 and 45Na2O-yTiO2-(55-y)P2O5 glasses. The addition of TiO2 to the starting glasses (x=0 and y=5 mol% TiO2) resulted in a nonlinear increase of glass transition temperature and dilatation softening temperature, whereas the thermal expansion coefficient decreased. All prepared glasses crystallize under heating within the temperature range of 300–610°C. The contribution of the surface crystallization mechanism over the internal one increases with increasing TiO2 content. With increasing TiO2 content the temperature of maximum nucleation rate is also gradually shifted from a value close to the glass transition temperature towards the crystallization temperature. X-ray diffraction measurements showed that the major compounds formed by glass crystallization were NaPO3, TiP2O7 and NaTi2(PO4)3. The chemical durability of the glasses without titanium oxide is very poor, but with the replacement of Na2O or P2O5 by TiO2, it increases sharply.  相似文献   

13.
Chemical preparation, crystal structure, and NMR spectroscopy of a new trans-2,5-dimethylpiperazinium monophosphate are given. This new compound crystallizes in the triclinic system, with the space group P-1 and the following parameters: a = 6.5033(3), b = 7.6942(4), c = 8.1473(5) Å, α = 114.997(3), β = 92.341(3), γ = 113.136(3), V = 329.14(3) Å3, Z = 1, and Dx = 1.565 g cm?3. The crystal structure has been determined and refined to R = 0.030 and R w(F 2) = 0.032 using 1558 independent reflections. The structure can be described as infinite [H2PO4] n n? chains with (C6H16N2)2+ organic cations anchored between adjacent polyanions to form columns of anions and cations running along the b axis. This compound has also been investigated by IR, thermal, and solid-state, 13C and 31P MAS NMR spectroscopies and Ab initio calculations.  相似文献   

14.
TiO2–SiO2 composite nanoparticles were prepared by a sol–gel process. To obtain the assembly of TiO2–SiO2 composite nanoparticles, different molar ratios of Ti/Si were investigated. Polyurethane (PU)/(TiO2–SiO2) hybrid films were synthesized using the “grafting from” technique by incorporation of modified TiO2–SiO2 composite nanoparticles building blocks into PU matrix. Firstly, 3-aminopropyltriethysilane was employed to encapsulate TiO2–SiO2 composite nanoparticles’ surface. Secondly, the PU shell was tethered to the TiO2–SiO2 core surface via surface functionalized reaction. The particle size of TiO2–SiO2 composite sol was performed on dynamic light scattering, and the microstructure was characterized by X-ray diffraction and Fourier transform infrared. Thermogravimetric analysis and transmission electron microscopy (TEM) employed to study the hybrid films. The average particle size of the TiO2–SiO2 composite particles is about 38 nm when the molar ratio of Ti/Si reaches to1:1. The TEM image indicates that TiO2–SiO2 composite nanoparticles are well dispersed in the PU matrix.  相似文献   

15.
La2Mo2O9 samples were prepared from freeze-dried powder precursors and characterized by XRD, TG/DTA, SEM, electrical and electrochemical measurements. Pellets with different density were obtained by sintering at temperatures between 900 and 1100 °C to obtain nearly dense samples with grain sizes in the range 1–8 m. The electrical conductivity was measured using impedance spectroscopy. The capacitance and relaxation frequencies of the main contributions to the spectra were used to ascribe the contributions of grain interiors and internal interfaces, and their temperature dependence. A coulometric titration technique was used to evaluate the change of oxygen stoichiometry under moderately reducing conditions, and to estimate the stability limits under strongly reducing conditions. An ion-blocking method was used to evaluate the onset of n-type conductivity, and a combination of these results with total conductivity measurements was used to obtain the ionic transport number. A combination of oxygen stoichiometry changes and ion-blocking results was used to obtain estimates of mobility.Presented at the OSSEP Workshop Ionic and Mixed Conductors: Methods and Processes, Aveiro, Portugal, 10–12 April 2003  相似文献   

16.
17.
The reaction of [RuCl2(PPh3)3] complex with dimethylpyrazole has been examined. A new ruthenium complex—[RuCl2(PPh3)2(3,5-Me2HPz)2] has been obtained and characterized by IR, 1H NMR and UV-VIS measurements. Crystal and molecular structure of the complex has been determined. The electronic structure of the complex has been calculated by TDDFT method.  相似文献   

18.
 The analysis of the interaction of micelles formed by a blockcopolymer is given by means of small-angle X-ray (SAXS) and small-angle neutron scattering (SANS). The blockcopolymer consists of poly(styrene) and poly(ethylene oxide) (molecular weight of each block: 1000 g/mol) and forms well-defined micelles (weight-association number: 400, weight-average diameter: 15.4 nm) in water. The internal structure has been studied previously (Macromolecules 29:4006 (1996)) by SAXS. There it has been shown that the micelles are spherical objects. The structure factor S(q) as a function of the scattering vector q (q=(4π/λ) sin (θ/2); λ: wavelength of the radiation in the medium; θ: scattering angle) can be extracted from both sets of small-angle scattering data (SANS: q≤0.4 nm-1; SAXS: q≤0.6 nm-1). It is shown that particle interaction in the present system can be described by assuming soft interaction which is modeled by a square-step potential. Received: 12 May 1997 Accepted: 9 July 1997  相似文献   

19.
Nanogold particles of 10 nm were used to label goat anti-human IgG (GIgG) to obtain nanogold-labeled GIgG (AuGIgG). In a citrate-HCI buffer solution of pH 2.27, AuGIgG showed a strong catalytic effect on the reaction between HAuCl4 and NH2OH to form big gold particles that exhibited a resonance scattering (RS) peak at 796 nm. Under the chosen conditions, AuGIgG combined with IgG to form immunocomplex AuGIgG-IgG that can be removed by centrifuging at 16000 r/min. AuGIgG in the centrifuging solution also showed catalytic effect on the reaction. On those grounds, an immunonanogold catalytic RS assay for IgG was designed. With addition of IgG, the amount of AuGIgG in the centrifuging solution decreased; the RS intensity at 796 nm (I 796 nm) decreased linearly. The decreased intensity ΔI 796 nm was linear with respect to the IgG concentration in the range of 0.08–16.0 ng · mL−1 with a detection limit of 0.02 ng · mL−1. This assay was applied to analysis of IgG in sera with satisfactory sensitivity, selectivity and rapidity. Supported by the National Natural Science Foundation of China (Grant No. 20667001), Natural Science Foundation of Guangxi Province (Grant No. 0728213), and the Foundation of New Century Ten-Hundred-Thousand Talents of Guangxi Province  相似文献   

20.
A TiO2 thin buffer layer was introduced between the (Pb0.4Sr0.6)TiO3 (PST) film and the Pt/Ti/SiO2/Si substrate in an attempt to improve their electrical properties. Both TiO2 and PST layers were prepared by a chemical solution deposition method. It was found that the TiO2 buffer layer increased the (100)/(001) preferred orientation of PST and decreased the surface roughness of the films, leading to an enhancement in electrical properties including an increase in dielectric constant and in its tunability by DC voltage, as well as a decrease in dielectric loss and leakage current density. At an optimized thickness of the TiO2 buffer layer deposited using 0.02 mol/l TiO2 sol, the 330-nm-thick PST films had a dielectric constant, loss and tunability of 1126, 0.044 and 60.7% at 10 kHz, respectively, while the leakage current density was 1.95 × 10−6 A/cm2 at 100 kV/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号