首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acquisition and different appearances observed for wide bandwidth solid-state MAS NMR spectra of low-γ nuclei, using (14)N as an illustrative nucleus and employing two different commercial spectrometers (Varian, 14.1T and Bruker, 19.6T), have been compared/evaluated and optimized from an experimental NMR and an electronic engineering point of view, to account for the huge differences in these spectra. The large differences in their spectral appearances, employing the recommended/standard experimental set-up for the two different spectrometers, are shown to be associated with quite large differences in the electronic design of the two types of preamplifiers, which are connected to their respective probes through a 50Ω cable, and are here completely accounted for. This has led to different opportunities for optimum performances in the acquisition of nearly ideal wide bandwidth spectra for low-γ nuclei on the two spectrometers by careful evaluation of the length for the 50Ω probe-to-preamp cable for the Varian system and appropriate changes to the bandwidth (Q) of the NMR probe used on the Bruker spectrometer. Earlier, we reported quite distorted spectra obtained with Varian Unity INOVA spectrometers (at 11.4 and 14.1T) in several exploratory wide bandwidth (14)N MAS NMR studies of inorganic nitrates and amino acids. These spectra have now been compared/evaluated with fully analyzed (14)N MAS spectra correspondingly acquired at 19.6T on a Bruker spectrometer. It is shown that our upgraded version of the STARS simulation/iterative-fitting software is capable of providing identical sets for the molecular spectral parameters and corresponding fits to the experimental spectra, which fully agree with the electronic measurements, despite the highly different appearances for the MAS NMR spectra acquired on the Varian and Bruker spectrometers.  相似文献   

2.
We present a new application of the symmetry-based dipolar recoupling scheme, for exciting directly double-quantum (2Q) coherences between the central transition of homonuclear half-integer quadrupolar nuclei. With respect to previously published 2Q-recoupling methods (M. Eden, D. Zhou, J. Yu, Chem. Phys. Lett. 431 (2006) 397), the sequence is used without π/2 bracketing pulses and with an original super-cycling. This leads to an improved efficiency (a factor of two for spin-5/2) and to a much higher robustness to radio-frequency field inhomogeneity and resonance offset. The 2Q-coherence excitation performances are demonstrated experimentally by 27Al NMR experiments on the aluminophosphates berlinite, VPI5, AlPO4-14, and AlPO4-CJ3. The two-dimensional 2Q–1Q correlation experiments incorporating these recoupling sequences allow the observation of 2Q cross-peaks between central transitions, even at high magnetic field where the difference in offset between octahedral and tetrahedral 27Al sites exceeds 10 kHz.  相似文献   

3.
4.
Band-selective pulses are frequently used in multi-dimensional NMR in solution, but have been used relatively less often in solid-state NMR applications because of the complications imposed by magic-angle spinning. In this work, we examine the frequency profiles and the refocusing efficiency of several commonly employed selective general rotation pi pulses through experiments and numerical simulations. We demonstrate that highly efficient refocusing of transverse magnetization can be achieved, with experiments that agree well with numerical simulations. We also show that the rotational echo is shifted by a half rotor period if a selective pulse is applied over an integer number of rotor periods. Appropriately synchronizing indirect evolution periods with selective pulses ensures proper phasing of cross peaks in 2D spectra. The improved performance of selective pulses in multi-dimensional protein spectroscopy is demonstrated on the 56-residue beta1 immunoglobulin binding domain of protein G (GB1).  相似文献   

5.
An extension of the exploitation of indirect observation of 1H nuclei through 13C resonances is presented in the case of crosslinked elastomers. It is demonstrated that, by using this method in vulcanized elastomers above Tg a direct visualization of residual dipolar interactions on different functional groups as well as their dependence on motional constraints is available. It is also shown that 2H natural abundance NMR spectra of elastomers provide similar information on motional constraints by way of residual quadrupolar interactions.  相似文献   

6.
A combination of isopotential spin-dry ultracentrifugation (ISDU) and microtome techniques was used to facilitate the collection of high field/high frequency (170 GHz) ESR spectra corresponding to different orientations of the membrane normal relative to the magnetic field. This technique is particularly valuable for aligned biological samples in vitro. At 170 GHz, conventional sample preparation techniques based solely on ISDU constrained the sample to be oriented so that the membrane normal was parallel to the applied magnetic field due to the geometry and the millimeter wave field distribution of the Fabry-Pérot resonator used in these experiments. This orientational constraint limited the information that could be obtained from aligned membranes at high field. The combined ISDU/microtome technique overcame this limitation. Spectra from spin-labeled Gramicidin A and the spin label cholestane in aligned DPPC membranes provide a demonstration of the technique. We also discuss some virtues of high field/high frequency ESR on aligned membranes compared to X-band.  相似文献   

7.
We report the first experimental determination of the carboxylate oxygen electric-field-gradient (EFG) and chemical shielding (CS) tensors in polycrystalline γ-glycine. Analysis of magic-angle spinning (MAS) and stationary 17O NMR spectra of [17O]-γ-glycine obtained at 9.4, 14.1, 16.4, and 18.8 T yields the magnitudes of the 17O EFG and CS tensors and the relative orientations between the two tensors. Extensive quantum chemical calculations at both the restricted Hartree–Fock and density functional levels have been performed to present the absolute tensor orientations in term of the molecular frame. We have demonstrated that 17O NMR tensor information could be unambiguously derived by the multiple field analyses of stationary 17O NMR spectra.  相似文献   

8.
This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.  相似文献   

9.
10.
Twelve amino acid residues corresponding to an "EF-hand" calcium-binding site were added to the N-terminus of a protein, providing a specific lanthanide ion binding that weakly orients the protein in solution. A comparison of spectra of the protein with and without the EF-hand residues demonstrates that the structure of the native protein is not perturbed by this modification, since there are minimal chemical shift changes. With a lanthanide but not calcium bound to the EF-hand, the protein is weakly oriented by the magnetic field, since residual dipolar couplings can be measured. Since the signs and magnitudes of the couplings varied with the type of lanthanide, this demonstrated the ability to obtain multiple orientations of the protein in solution. The sample is a membrane protein in lipid micelles that disrupted the commonly employed bicelle and filamentous phage solutions; therefore, the addition of a specific metal binding site in the form of an EF-hand may provide a general approach to orienting proteins where the addition of external agents is problematic. An additional benefit is that the lanthanide ions perturb the protein resonances in ways that provide unique orientational and distance constraints.  相似文献   

11.
A simple stabilization scheme of B(0) magnetic field fluctuations is described. The method is based on external measurements of time dependent magnetic field fluctuations by fluxgate sensors and generation of a compensating correction current in a coil mounted directly on an NMR magnet. It is shown that such an approach efficiently eliminates relatively slow magnetic field variations with frequency up to approximately 100 Hz. In combination with a standard (2)H field-frequency lock system, the method enables acquisition of reproducible lineshapes and dramatically improves overall performance of a high resolution NMR spectrometer. The presented solution might substitute for the internal lock system in these case where deuterium lock is not available.  相似文献   

12.
《Physics letters. A》1988,128(8):433-436
Data are presented of experimental and theoretical studies concerning the influence of a magnetic field parallel to the cathode surface on the near-cathode drop in the potential Uk. Uk is shown to grow with increasing magnetic field. The theoretical and experimental results are in good agreement.  相似文献   

13.
The interplay between peptides and lipid bilayers drives crucial biological processes. For example, a critical step in the replication cycle of enveloped viruses is the fusion of the viral membrane and host cell endosomal membrane, and these fusion events are controlled by viral fusion peptides. Thus such membrane-interacting peptides are of considerable interest as potential pharmacological targets. Deeper insight is needed into the mechanisms by which fusion peptides and other viral peptides modulate their surrounding membrane environment, and also how the particular membrane environment modulates the structure and activity of these peptides. An important step toward understanding these processes is to characterize the structure of viral peptides in environments that are as biologically relevant as possible. Solid state nuclear magnetic resonance (ssNMR) is uniquely well suited to provide atomic level information on the structure and dynamics of both membrane-associated peptides as well as the lipid bilayer itself; further ssNMR can delineate the contribution of specific membrane components, such as cholesterol, or changing cellular conditions, such as a decrease in pH on membrane-associating peptides. This paper highlights recent advances in the study of three types of membrane associated viral peptides by ssNMR to illustrate the more general power of ssNMR in addressing important biological questions involving membrane proteins.  相似文献   

14.
张蕾  郝长春  冯盈  高峰  逯晓龙  李俊花  孙润广 《中国物理 B》2016,25(9):90507-090507
Myelin basic protein(MBP) is an essential structure involved in the generation of central nervous system(CNS)myelin.Myelin shape has been described as liquid crystal structure of biological membrane.The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin.In this paper,we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy(AFM).By analyzing the pressure–area(π–A) and pressure–time(π–T) isotherms,univariate linear regression equation was obtained.In addition,the elastic modulus,surface pressure increase,maximal insertion pressure,and synergy factor of monolayers were detected.These parameters can be used to modulate the monolayers binding of protein,and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3-phosphoserine(DPPS) monolayer,followed by DPPC/DPPS mixed and1,2-dipalmitoyl-sn-glycero-3-phospho-choline(DPPC) monolayers via electrostatic and hydrophobic interactions.AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP(5 n M) show a phase separation texture at the surface pressure of 20 m N/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure.MBP is not an integral membrane protein but,due to its positive charge,interacts with the lipid head groups and stabilizes the membranes.The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value.  相似文献   

15.
Interband magnetoabsorption measurements of a superlattice with GaAs/ GaAlAs layers, thin compared to the cyclotron radius, in a magnetic field parallel to the layers show interband Landau level transitions exclusively for radiation energies falling within the hole and the electron subband width. The data are quantitatively explained with energy levels of a Kronig-Penney model in a parallel magnetic field, and permit a direct observation of the superlattice bandwidth.  相似文献   

16.
This work presents the possibility of applying the Floquet–Magnus expansion and the Fer expansion approaches to the most useful interactions known in solid-state nuclear magnetic resonance using the magic-echo scheme. The results of the effective Hamiltonians of these theories and average Hamiltonian theory are presented.  相似文献   

17.
Recent progress in multi-dimensional solid-state NMR correlation spectroscopy at high static magnetic fields and ultra-fast magic-angle spinning is discussed. A focus of the review is on applications to protein resonance assignment and structure determination as well as on the characterization of protein dynamics in the solid state. First, the consequences of ultra-fast spinning on sensitivity and sample heating are considered. Recoupling and decoupling techniques at ultra-fast MAS are then presented, as well as more complex experiments assembled from these basic building blocks. Furthermore, we discuss new avenues in biomolecular solid-state NMR spectroscopy that become feasible in the ultra-fast spinning regime, such as sensitivity enhancement based on paramagnetic doping, and the prospect of direct proton detection.  相似文献   

18.
The spin configurations in the absence of an external magnetic field have been systematically investigated for a magnetic bilayer system consisting of two ferromagnetic layers separated by a non-magnetic layer with interlayer exchange coupling. Based on a phenomenological model, the conditions for the existence of collinear and non-collinear spin structures were derived for three kinds of magnetic bilayers with different combinations of in-plane cubic and uniaxial anisotropies for the two ferromagnetic layers. The phase diagrams of the spin configurations at zero field were drawn, taking into account the lowest-order anisotropy parameters of both the ferromagnetic layers. The values of the canting angle have been derived analytically and then numerically plotted.  相似文献   

19.
Low-power phase-modulated Lee–Goldburg homonuclear decoupling was used to record PDLF spectra of fluorine-substituted benzene derivatives dissolved in nematic thermotropic liquid crystalline solvents. The low-power decoupling minimizes sample heating during RF irradiation while still achieving highly resolved PDLF spectra. The method is illustrated by recording spectra for 1,3-dichloro-4-fluoro-5-nitrobenzene, 1,3-dichloro-4-fluorobenzene, and 1,2-difluorobenzene dissolved in different nematic solvents.  相似文献   

20.
We study the Landau states in the biased AA-stacked graphene bilayer under an exponentially decaying magnetic field along one spatial dimension. The results show that the energy eigenvalues of the system are strongly dependent on the inhomogeneity of the magnetic field and the bias voltage between the graphene layers, and in particular the reordering and mixing of finite Landau states could occur. Moreover, we also demonstrate that the current carrying states induced by the decaying magnetic field propagate vertically to the magnetic-field gradient within the graphene sample and can be further modulated by the bias voltage between the layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号