首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
Acetylene (C2H2), as an important precursor for chemiluminescence species, is a key to understand, simulate and model the chemiluminescence and the related reaction paths. Hence we developed a high resolution spectrometer based on direct Tunable Diode Laser Absorption Spectroscopy (TDLAS) allowing the first quantitative, calibration-free and spatially resolved in situ C2H2 measurement in an atmospheric non-premixed counter-flow flame supported on a Tsuji burner. A fiber-coupled distributed feedback diode laser near 1535 nm was used to measure several absolute C2H2 concentration profiles (peak concentrations up to 9700 ppm) in a laminar non-premixed CH4/air flame (T up to 1950 K) supported on a modified Tsuji counter-flow burner with N2 purge slots to minimize end flames. We achieve a fractional optical resolution of up to 5×10?5 OD (1σ) in the flame, resulting in temperature-dependent acetylene detection limits for the P17e line at 6513 cm?1 of up to 2.1 ppm?m. Absolute C2H2 concentration profiles were obtained by translating the burner through the laser beam using a DC motor with 100 μm step widths. Intercomparisons of the experimental C2H2 profiles with simulations using our new hydrocarbon oxidation mechanisms show excellent agreement in position, shape and in the absolute C2H2 values.  相似文献   

2.
We developed a new, spatially traversing, direct tunable diode laser absorption spectrometer (TDLAS) for quantitative, calibration-free, and spatially resolved in situ measurements of CO profiles in atmospheric, laminar, non-premixed CH4/air model flames stabilized at a Tsuji counter-flow burner. The spectrometer employed a carefully characterized, room temperature distributed feedback diode laser to detect the R20 line of CO near 2,313?nm (4,324.4?cm?1), which allows to minimize spectral CH4 interference and detect CO even in very fuel-rich zones of the flame. The burner head was traversed through the 0.5?mm diameter laser beam in order to derive spatially resolved CO profiles in the only 60-mm wide CH4/air flame. Our multiple Voigt line Levenberg?CMarquardt fitting algorithm and the use of highly efficient optical disturbance correction algorithms for treating transmission and background emission fluctuations as well as careful fringe interference suppression permitted to achieve a fractional optical resolution of up to 2.4?×?10?4 OD (1??) in the flame (T up to 1,965?K). Highly accurate, spatially resolved, absolute gas temperature profiles, needed to compute mole fraction and correct for spectroscopic temperature dependencies, were determined with a spatial resolution of 65???m using ro-vibrational N2-CARS (Coherent anti-Stokes Raman spectroscopy). With this setup we achieved temperature-dependent CO detection limits at the R20 line of 250?C2,000?ppmv at peak CO concentrations of up to 4?vol.%. This permitted local CO detection with signal to noise ratios of more than 77. The CO TDLAS spectrometer was then used to determine absolute, spatially resolved in situ CO concentrations in the Tsuji flame, investigate the strain dependence of the CO Profiles and favorably compare the results to a new flame-chemistry model.  相似文献   

3.
Detailed kinetic modeling and flame-sampling molecular-beam time-of-flight mass spectrometry are combined to unravel important pathways leading to the formation of benzene in a premixed laminar low-pressure 1,3-butadiene flame. The chemical kinetic model developed is compared with new experimental results obtained for a rich (? = 1.8) 1,3-butadiene/O2/Ar flame at 30 Torr and with flame data for a similar but richer (? = 2.4) flame reported by Cole et al. [Combust. Flame 56 (1) (1984) 51-70]. The newer experiment utilizes photoionization by tunable vacuum-ultraviolet synchrotron radiation, which allows for the identification and separation of combustion species by their characteristic ionization energies. Predictions of mole fractions as a function of distance from the burner of major combustion intermediates and products are in overall satisfactory agreement with experimentally observed profiles. The accurate predictions of the propargyl radical and benzene mole fractions permit an assessment of potential benzene formation pathways. The results indicate that C6H6 is formed mainly by the C3H3 + C3H3 and i-C4H5 + C2H2 reactions, which are roughly of equal importance. Smaller contributions arise from C3H3 + C3H5. However, given the experimental and modeling uncertainties, other pathways cannot be ruled out.  相似文献   

4.
Self-broadening coefficients and line strengths have been measured at room temperature for 30 lines of C2H2 in the P and R branches of the ν4 + ν5 band, using a tunable diode laser spectrometer. These lines, ranging from P(22) to R(23), are located in the spectral range 1275-1390 cm−1. A semiclassical calculation of the line broadenings has been performed considering the main electrostatic interactions and an anisotropic dispersion contribution leading to results in satisfactory agreement with the experimental data.  相似文献   

5.
The continuous-wave high-efficiency laser emission of Nd:GdVO4 at the second-harmonic of 456 nm obtained by intracavity frequency doubling with an BiB3O6(BiBO) nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. About 3.8 W at 456 nm with M2 = 1.4 was obtained from a 5 mm-thick 0.4 at.% Nd:GdVO4 laser medium and a 12 mm-long BiBO nonlinear crystal in a Z-type cavity for 13.9 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.274. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4F5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

6.
The primary product formation of the C3H5 + O reaction in the gas phase has been studied at room temperature. Allyl radicals (C3H5) and O atoms were generated by laser flash photolysis at λ = 193 nm of the precursors C3H5Cl, C3H5Br, C6H10 (1,5-hexadiene), and SO2, respectively. The educts and the products were detected by using quantitative FTIR spectroscopy. The combined product analysis of the experiments with the different precursors leads to the following relative branching fractions: C3H5 + O → C3H4O + H (47%), C2H4 + H + CO (41%), H2CO + C2H2 + H (7%), CH3CCH + OH and CH2CCH2 + OH (<5%). The rate of reaction has been studied relative to CH3OCH2 + O and C2H5 + O in the temperature range from 300 to 623 K. Here, the radicals were produced via the fast reactions of propene, dimethyl ether, and ethane, respectively, with atomic fluorine. Laser-induced multiphoton ionization combined with TOF mass spectrometry and molecular beam sampling from a flow reactor was used for the specific and sensitive detection of the C3H5, C2H5, and CH3COCH2 radicals. The rate coefficient of the reaction C3H5 + O was derived with reference to the reaction C2H5 + O leading to k(C3H5 + O) = (1.11 ± 0.2) × 1014 cm3/(mol s) in the temperature range 300-623 K. The C3H5 + O rate and channel branching, when incorporated in a suitable detailed reaction mechanism, have a large influence on benzene and allyl concentration profiles in fuel-rich propene flames, on the propene flame speed, and on propene ignition delay times.  相似文献   

7.
A diode laser spectrometer was used in the laboratory to study 13CO2 and 18O12C16O line intensities and self-broadening coefficients near 2.04 μm. The spectral region ranging from 4896 to 4903 cm1, which is suitable for in situ laser sensing of both isotopologues in the lower Martian atmosphere, was investigated using a distributed feedback GaInSb diode laser. Five lines of the (2 00 1)II←(0 0 0) band of 13CO2 and seven lines of the (2 00 1)II←(0 0 0) band of 18O12C16O were carefully revisited. The measured intensities and self-broadening coefficients were thoroughly compared with relevant molecular databases.  相似文献   

8.
Polarization spectroscopy in the mid-infrared (IRPS) has been applied to the detection of acetylene molecules making use of the asymmetric C-H stretching vibration at around 3 μm. The infrared laser pulses were produced through difference frequency generation in a LiNbO3 crystal pumped by a Nd:YAG and dye laser system. By directly probing the ro-vibrational transitions with IRPS, sensitive detection of molecules with otherwise inaccessible electronic states was realized with high temporal and spatial resolution by using a pulsed laser and a cross-beam geometry. Detection sensitivities of 2 × 1013 molecules/cm3 (10 ppm in 70 mbar gas mixture) of C2H2 were achieved using the P(1 1) line of the (0 1 0(1 1)0)-(0 0 0 00 00) band. The dependence of the IRPS signal on the pump laser fluence, acetylene mole fraction, and buffer gas pressure of Ar, N2, H2, and CO2 has been studied experimentally. The investigation demonstrates the quantitative nature of IRPS for sensitive detection of polyatomic IR active molecules. In order to fully demonstrate the technique for combustion applications, nascent acetylene molecules were measured in a low pressure methane/oxygen flame.  相似文献   

9.
A pair of 1.5 μm semiconductor laser frequency standards have been developed for optical telecommunications use, stabilised to transitions of 12C2H2 and 13C2H2, using cavity-enhanced Doppler-free saturation absorption spectroscopy. The absolute frequencies of 41 lines of the ν1 + ν3 band of 12C2H2, covering the spectral region 1520-1545 nm, have been measured by use of a passive optical frequency comb generator, referenced to 13C2H2 transitions of known frequency. The mean experimental uncertainties (coverage factor k = 1) of the frequency values are 3.0 kHz (type A) and 10 kHz (type B). Improved values of the band origin ν0, rotational constants B′ and B″, and centrifugal distortion coefficients D′, D″, H′, and H″ are presented.  相似文献   

10.
We fabricate a low noise erbium-doped fiber ring laser that can be continuously tuned over 102 nm by insertion of the fiber Fabry-Perot tunable filter (FFP-TF) in the ring cavity with a novel cavity structure and the optimal gain medium length. As an application of this fiber ring laser, we performed the absorption spectroscopy of acetylene (13C2H2) and hydrogen cyanide (H13C14N) and measure the absorption spectra of more than 50 transition lines of these gases with an excellent signal to noise ratio (SNR). The pressure broadening coefficients of four acetylene transition lines are obtained using this fiber ring laser and an external cavity laser diode.  相似文献   

11.
A novel unstable external cavity for a broad area laser diode is presented. The cavity is based on a V-shaped setup that improves the slow axis beam quality by coupling the internal modes of a gain guided laser diode. The novelty here is the compact unstable resonator design without lenses in direction of the slow axis. For frequency stabilisation and to narrow the line width of the laser diode emission a diffraction grating in a Littrow configuration is used. With this setup up to 1 W of near diffraction limited light with a beam quality of M2 ? 1.3 and a line width of 1.7 MHz could be achieved. The external cavity laser was tunable over a range of 35 nm (FWHM) around the center wavelength of 976 nm.  相似文献   

12.
The absorption spectra of H12C13CD and H13C12CD have been observed at high resolution between 6480 and 6610 cm−1 using an external cavity diode laser. The strong 2ν1 band has been observed for each species using a sample enriched in deuterium at natural abundance of 13C. Rotational analyses reveal bands of both species to be essentially unperturbed. Centers of unblended lines are determined with an accuracy of approximately 10 MHz.  相似文献   

13.
The continuous-wave high-efficiency laser emission from Nd:YVO4 at the fundamental wavelength of 1342 nm and its 671 nm second harmonic obtained by intra-cavity frequency doubling in an LBO nonlinear crystal are investigated under pumping by diode laser at 880 nm (on the 4F3/24I13/2 transition). The end-pumped Nd:YVO4 crystal yielded a continuous-wave output power of 9.6 W at 1342 nm for 18.9 W of absorbed pump power. The slope efficiency measured with respect to the absorbed pump power is 60%. An output of 5.5 W at 671 nm was obtained by frequency doubling, resulting in an optical-to-optical efficiency with respect to the absorbed pump power of 29%. Comparative results obtained for the pump with a diode laser at 808 nm (on the 4F5/24I13/2 transition) are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

14.
This work reports measurements of the absolute rate coefficients and Rice-Ramsperger-Kassel-Markus (RRKM) master equation (ME) simulations of the C2H3 + C3H6 reaction. Direct kinetic studies were performed over a temperature range of 300-700 K and pressures of 15, 25, and 100 Torr. Vinyl radicals were generated by laser photolysis of vinyl iodide at 266 nm, and time-resolved absorption spectroscopy was used to probe vinyl radicals through absorption at 423.2 nm. A weighted modified Arrhenius fit to the experimental rate constant is k1 = (1.3 ± 0.2) × 10−12 cm3 molecule−1 s−1(T/1000)1.6 exp[−(1510 ± 80/T)]. Fifteen stationary points and 48 transition states on the C5H9 potential energy surface (PES) were calculated using the G3 method in Gaussian 03. RRKM/ME simulations were performed using VariFlex on a simplified PES to predict pressure dependent rate coefficients and branching fractions for the major channels. For temperatures between 350 and 700 K, the calculated rate coefficient agrees with the experimental rate coefficient within 20%. At low temperatures, the primary products are the initial adducts 4-penten-2-yl and 2-methyl-3-buten-1-yl. At higher temperatures, the dominant products are 1,3-butadiene + methyl, allyl + ethene, and 1,3-pentadiene + H. Although C2H3 + C3H6 → allyl + ethene is thermodynamically favored, the simulations predict that it does not become the dominant product until 1700 K.  相似文献   

15.
Using a high-resolution tunable diode laser photoacoustic spectrometer, self-, N2 and O2 pressure broadening coefficients for the first 11 transitions of 12C16O2 in the R branch of the (30012) ← (00001) overtone band at the 6348 cm−1 have been revisited at room temperature (∼298 K). Air-broadening parameters have also been calculated from the N2 and O2 measurements. The dependence of the broadening on rotational quantum number m is discussed. The recorded lineshapes are fitted with standard Voigt line profiles in order to determine the collisional broadening coefficients of carbon dioxide transitions. The results are compared to our previous measurements and to the values reported in the HITRAN04 database and by other research group with a different spectroscopic technique.  相似文献   

16.
Structures of several premixed ethylene-oxygen-argon rich flat flames burning at 50 mbar have been established by using molecular beam mass spectrometry in order to investigate the effect of CO2, or NH3, or H2O addition on species concentration profiles. The aim of this study is to examine the eventual changes of profiles of detected hydrocarbon intermediates which could be considered as soot precursors (C2H2, C4H2, C5H4, C5H6, C6H2, C6H4, C6H6, C7H8, C6H6O, C8H6, C8H8, C9H8 and C10H8). The comparative study has been achieved on four flames with an equivalence ratio (f) of 2.50: one without any additive (F2.50), one with 15% of CO2 replacing the same quantity of argon (F2.50C), one with 3.3% of NH3 in partial replacement of argon (F2.50N) and one with 13% of H2O in replacement of the same quantity of argon (F2.50H). The four flat flames have similar final flame temperatures (1800 K).CO2, or NH3, or H2O addition to the fresh gas inlet causes a shift downstream of the flame front and thus flame inhibition. Endothermic processes CO2 + H = CO + OH and H2O + H = H2 + OH are responsible of the reduction of the hydrocarbon intermediates in the CO2 and H2O added flames through the supplementary formation of hydroxyl radicals. It has been demonstrated that such processes begin to play at the end of the flame front and becomes more efficient in the burnt gases region.The replacement of some Ar by NH3 is responsible only for a slight decrease of the maximum mole fraction of C2H2, but NH3 becomes much more efficient for C4H2 and C5 to C10 species. Moreover, the efficiency of NH3 as a reducing agent of C5 to C10 intermediates is larger than that of CO2 and H2O for equal quantities added.  相似文献   

17.
Polyynes were prepared by liquid-phase laser ablation of a graphite target at 1064 nm and identified by analyzing UV absorption spectra in deionized water and various aqueous solutions. We observed that major UV absorption peaks coincide with the electronic transitions corresponding to linear hydrogen-capped polyynes (CnH2: n = 6, 8, 10). The peak intensities increased when polyynes were produced by irradiating the target immersed in acidic media, while those were relatively weak in basic media. This leads us to conclude that OH or H+ ions play a certain role in the formation of polyynes.  相似文献   

18.
Laminar flame speeds were accurately measured for CO/H2/air and CO/H2/O2/helium mixtures at different equivalence ratios and mixing ratios by the constant-pressure spherical flame technique for pressures up to 40 atmospheres. A kinetic mechanism based on recently published reaction rate constants is presented to model these measured laminar flame speeds as well as a limited set of other experimental data. The reaction rate constant of CO + HO2 → CO2 + OH was determined to be k = 1.15 × 105T2.278 exp(−17.55 kcal/RT) cm3 mol−1 s−1 at 300-2500 K by ab initio calculations. The kinetic model accurately predicts our measured flame speeds and the non-premixed counterflow ignition temperatures determined in our previous study, as well as homogeneous system data from literature, such as concentration profiles from flow reactor and ignition delay time from shock tube experiments.  相似文献   

19.
The effects of temperature and pressure on the formation and decomposition of C6H5C2H2O2 in the C6H5C2H2 + O2 reaction have been investigated at temperatures from 298 to 378 K by directly monitoring the C6H5C2H2O2 radical in the visible region by cavity ringdown spectrometry (CRDS). The rate constant for the C6H5C2H2 + O2 association and that for fragmentation of C6H5C2H2O2 were found to be k1 (C6H5C2H2 + O2 → C6H5C2H2O2) = (3.20 ± 1.19) × 1011 exp(+760/T) cm3 mol−1 s−1 and k2 (C6H5C2H2 O2 → C6H5CHO + HCO) = (1.68 ± 0.13) × 104 s−1, respectively. Additional kinetic measurements by pulsed laser photolysis/mass spectrometry show that C6H5CHO was produced in the C6H5C2H2 + O2 reaction as predicted and the formation of C6H5CHO from the decomposition of C6H5C2H2O2 is temperature-independent, consistent with the CRDS experimental data.  相似文献   

20.
The two-channel thermal decomposition of toluene, C6H5CH3 → C6H5CH2 + H (1) and C6H5CH3 → C6H5 + CH3 (2), was investigated in shock tube experiments over the temperature range of 1400-1780 K at a pressure of 1.5 (±0.1) bar. Rate coefficients for reactions (1) and (2) were determined by monitoring benzyl radical (C6H5CH2) absorption at 266 nm during the decomposition of toluene diluted in argon and modeling the temporal behavior of the benzyl concentration with a kinetic model. The first-order rate coefficients determined at a pressure of 1.5 bar are expressed by k1(T) = 2.09 × 1015 exp (−87510 [cal/mol]/RT) [s−1] and k2(T) = 2.66 × 1016 exp (−97880 [cal/mol]/RT) [s−1]. The resulting branching ratio, k1/(k1 + k2), ranges from 0.8 at 1350 K to 0.6 at 1800 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号