首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0-3.06), fuels (C1-C12), and pressures (20-760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C3 and C4 fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C3 and C4 species, were examined. Combination reactions of C3 species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C4H5 radicals are produced directly from the fuel, and in the n-decane flame where C4H5 radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins.  相似文献   

2.
Soot growth from inception to mass-loading is studied in a wide range of molecular weights (MW) from 105 to 1010u by means of size exclusion chromatography (SEC) coupled with on-line UV-visible spectroscopy. The evolution of MW distributions of soot is also numerically predicted by using a detailed kinetic model coupled with a discrete-sectional approach for the modeling of the gas-to-particle process. Two premixed flames burning n-heptane in slightly sooting and heavily sooting conditions are studied. The effect of aromatic addition to the fuel is studied by adding n-propylbenzene (10% by volume) to n-heptane in the heavily sooting condition. A progressive reduction of the MW distribution from multimodal to unimodal is observed along the flames testifying the occurrence of particle growth and agglomeration. These processes occur earlier in the aromatic-doped n-heptane flame due to the overriding role of benzene on soot formation which results in bigger young soot particles. Modeled MW distributions are in reasonable agreement with experimental data although the model predicts a slower coagulation process particularly in the slightly sooting n-heptane flame. Given the good agreement between model predictions and experiments, the model is used to explore the role of fuel chemistry on MW distributions. Two flames of n-heptane and n-heptane/n-propylbenzene in heavily sooting conditions with the same temperature profile and inert dilution are modeled. The formation of larger soot particles is still evident in the n-heptane/n-propylbenzene flame with respect to the n-heptane flame in the same operating conditions of temperature and dilution. In addition the model predicts a larger formation of molecular particles in the flame containing n-propylbenzene and shows that soot inception occurs in correspondence of their maximum formation thus indicating the importance of molecular growth in soot inception.  相似文献   

3.
Effects of doping high pressure methane diffusion flames with benzene, cyclo-hexane and n-hexane were investigated to assess the sooting propensity of three hydrocarbons with six carbons at elevated pressures. Amount of liquid hydrocarbons added to methane constituted 7.5% of the total carbon content of the fuel stream. The pressure range investigated extended up to 10 bar and the experiments were carried out in a high pressure combustion chamber capable of establishing stable laminar diffusion flames with various fuels at elevated pressures and was used in similar experiments previously. Temperatures and soot volume fractions were measured using the spectral soot emission technique capturing spectrally-resolved line-of-sight intensities which were subsequently inverted using an Abel type algorithm to obtain radial distributions assuming that the flames are axisymmetric. The total mass carbon flow of the fuel stream was kept constant at 0.524 mg/s in neat methane, benzene-doped methane, cyclo-hexane-doped methane, and n-hexane-doped methane flames to have tractable measurements at all pressures. Measured maximum soot volume fractions and evaluated maximum soot yields showed that benzene-doped methane flame had the higher values than cyclo-hexane doped methane flames which in turn had higher values than n-hexane doped methane flames at all pressures. Sooting propensity dependence of the three hydrocarbons on pressure can be ranked as, in descending order, n-hexane, cyclo-hexane, and benzene; however, the difference between pressure dependencies of n-hexane and cyclo-hexane was within the measurement error margins. Ratio of soot yields of benzene to n-hexane doped flames changed from about 2 at 2 bar to 1.2 at 10 bar; the ratio of benzene to cyclo-hexane doped flames showed similar trends.  相似文献   

4.
Experiments were conducted on a laminar premixed ethylene-air flame at equivalence ratios of 2.34 and 2.64. Comparisons were made between flames with 5% NO2 added by volume. Soot volume fraction was measured using light extinction and light scattering and fluorescence measurements were also obtained to provide added insight into the soot formation process. The flame temperature profiles in these flames were measured using a spectral line reversal technique in the non-sooting region, while two-color pyrometry was used in the sooting region. Chemical kinetics modeling using the PREMIX 1-D laminar flame code was used to understand the chemical role of the NO2 in the soot formation process. The modeling used kinetic mechanisms available in the literature. Experimental results indicated a reduction in the soot volume fraction in the flame with NO2 added and a delay in the onset of soot as a function of height above the burner. In addition, fluorescence signals—often argued to be an indicator of PAH—were observed to be lower near the burner surface for the flames with NO2 added as compared to the baseline flames. These trends were captured using a chemical kinetics model that was used to simulate the flame prior to soot inception. The reduction in soot is attributed to a decrease in the H-atom concentration induced by the reaction with NO2 and a subsequent reduction in acetylene in the pre-soot inception region.  相似文献   

5.
Ignition temperatures of non-premixed cyclohexane, methylcyclohexane, ethylcyclohexane, n-propylcyclohexane, and n-butylcyclohexane flames were measured in the counterflow configuration at atmospheric pressure, a free-stream fuel/N2 mixture temperature of 373 K, a local strain rate of 120 s?1, and fuel mole fractions ranging from 1% to 10%. Using the recently developed JetSurf 2.0 kinetic model, satisfactory predictions were found for cyclohexane, methyl-, ethyl-, and n-propyl-cyclohexane flames, but the n-butylcyclohexane data were overpredicted by 20 K. The results showed that cyclohexane flames exhibit the highest ignition propensity among all mono-alkylated cyclohexanes and n-hexane due to its higher reactivity and larger diffusivity. The size of mono-alkyl group chain was determined to have no measurable effect on ignition, which is a result of competition between fuel reactivity and diffusivity. Detailed sensitivity analyses showed that flame ignition is sensitive primarily to fuel diffusion and also to H2/CO and C1–C3 hydrocarbon kinetics.  相似文献   

6.
Modelling of aromatics and soot formation from large fuel molecules   总被引:2,自引:0,他引:2  
There is a need for prediction models of soot particles and polycyclic aromatic hydrocarbons (PAHs) formation in parametric conditions prevailing in automotive engines: large fuel molecules and high pressure. A detailed kinetic mechanism able to predict the formation of benzene and PAHs up to four rings from C2 fuels, recently complemented by consumption reactions of decane, was extended in this work to heptane and iso-octane oxidation. Species concentrations measured in rich, premixed flat flames and in a jet stirred reactor (JSR) were used to check the ability of the mechanism to accurately predict the formation of C2 and C3 intermediates and benzene at pressures ranging from 0.1 to 2.0 MPa. Pathways analyses show that propargyl recombination is the only significant route to benzene in rich heptane and iso-octane flames. When included as the first step of a soot particle formation model, the gas-phase kinetic mechanism predicts very accurately the final soot volume fraction measured in a rich decane flame at 0.1 MPa and in rich ethylene flames at 1.0 and 2.0 MPa.  相似文献   

7.
The flame structure of atmospheric-pressure sooting premixed flames of aliphatic and aromatic hydrocarbons with the same carbon atom number (hexane and benzene) were studied at similar temperatures and C/O ratios by sampling and chemical and spectroscopic analysis. The differences in the oxidation mechanism of hexane and benzene in fuel-rich conditions were found to produce a different chemical environment in the yield of light hydrocarbons and their relative compositions where soot inception occurs. The predominance of acetylene and simple aromatic reactants in the oxidation region of the benzene flame favoured the early appearance and steep rise of soot particles. Large formations of saturated and unsaturated hydrocarbons were observed in the main oxidation region of the hexane flame whereas a delayed formation of aromatics (mainly PAH) was observed at soot inception only after complete oxygen consumption. There are differences in soot inception mechanisms reflected by the soot structure from UV-vis spectral shapes and mass specific absorption coefficients. In the benzene flame, they appeared to be more ordered and aromatic with a narrower size of aromatic systems and/or more curved aromatic structures. By contrast, less ordering with a more complex aliphatic/aromatic structure and a larger variety of aromatic systems were found to characterize soot formed in the hexane flame.  相似文献   

8.
Strategies for spatially resolved soot volume-fraction measurements have been investigated in sooting laboratory flames with known soot characteristics. Two techniques were compared: Laser-Induced Fluorescence in C2 from Laser-Vaporized Soot (LIF(C2)LVS), and Laser-Induced Incandescence of soot (LII). The LII signal is the increased temperature radiation from soot particles which have been heated to temperatures of several thousand degrees as a consequence of absorption of laser radiation. The LIF(C2)LVS technique is based on the production of C2 radicals from laser-vaporized soot which occurs for laser intensities ≥107 W/cm2. A laser wavelength is chosen such that besides vaporizizng the soot, it also excites the C2 radicals, and the subsequent C2 fluorescence signal is detected. The signals from both techniques showed good correlation with soot volume fractions in the studied flame. The dependence of the signals on experimental parameters was studied, and the influence of interfering radiation, such as background flame luminosity and fluorescence from polyaromatic hydrocarbons, on studied signals was established. The potential of the two techniques for imaging of soot volume fractions in laboratory flames was demonstrated. Advantages and disadvantages of the studied techniques are discussed.  相似文献   

9.
Recent advances in the field of laser desorption/laser ionization mass spectrometry (LD/LI/MS) have renewed interest in these separation methods for fast analysis of chemical species adsorbed on soot particles. These techniques provide mass-separation of the desorbed phase with high selectivity and sensitivity and require very small soot samples. Combining LD/LI/MS with in situ measurements of soot and gaseous species is very promising for a better understanding of the early stage of soot growth in flames. In this work, three lightly sooting laminar jet flames (a methane diffusion flame and two premixed acetylene flames of equivalence ratio (?) = 2.9 and 3.5) were investigated by combining prompt and 50 ns-delayed laser-induced incandescence (LII) for spatially resolved measurements of soot volume fraction (fv) and laser-induced fluorescence (LIF) of polycyclic aromatic hydrocarbons (PAH). Soot and PAH calibration is performed by two-colour cavity ring-down spectroscopy (CRDS) at 1064 and 532 nm. Soot particles were sampled in the flames and analysed by LD/LI/Time-of-flight- MS. Soot samples are cooled to −170 °C to avoid adsorbed phase sublimation (under high vacuum in the TOF-MS). Our set-up is novel because of its ability to measure very low concentration of soot and PAH together with the ability to identify a large mass range of PAHs adsorbed on soot, especially volatile two-rings and three-rings PAHs. Studied flames exhibited a peak fv ranging from 15 ppb (acetylene, ? = 2.9) to 470 ppb (acetylene, ? = 3.5). Different mass spectra were found in the three flames, each exhibiting one predominant PAH mass; 202 amu (4-rings) in methane, 178 amu (3-rings) in acetylene,? = 2.9 and 128 amu (2-rings) in acetylene, ? = 3.5. These variations with flame condition contrasts with other recent studies and is discussed. The other PAH masses ranged from 102 (C8H6) to 424 amu (C34H16) and are well predicted by the stabilomer grid of Stein and Farr.  相似文献   

10.
Experimental measurements were conducted for temperatures and mole fractions of C1–C16 combustion intermediates in laminar coflow non-premixed methane/air flames doped with 3.9% (in volume) 1-butanol, 2-butanol, iso-butanol and tert-butanol, respectively. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) technique was utilized in the measurements of species mole fractions. The results show that the variant molecular structures of butyl alcohols have led to different efficiencies in the formation of polycyclic aromatic hydrocarbons (PAHs) that may cause the variations in sooting tendency. Detailed species information suggests that the presence of allene and propyne promotes benzene formation through the C3H3 + C3H4 reactions and consequently PAH formation through the additions of C2 and C3 species to benzyl or phenyl radicals. As a matter of fact, PAHs formed from the 1-butanol doped flame are the lowest among the four investigated flames, because 1-butanol mainly decomposes to ethylene and oxygenates rather than C3 hydrocarbon species. Meanwhile, the tert-butanol doped flame generates the largest quantities of allene and propyne among the four flames and therefore is the sootiest one.  相似文献   

11.
This paper describes the unusual sooting structure of three flames established by the laminar recirculation zones of a centerbody burner. The vertically mounted burner consists of an annular air jet and a central fuel jet separated by a bluff-body. The three ethylene fueled flames are identified as: fully sooting, donut-shape, and ring-shape sooting flames. Different shapes of the soot structures are obtained by varying the N2 dilution in the fuel and air jets while maintaining a constant air and fuel velocity of 1.2 m/s. All three flames have the unusual characteristic that the soot, entrained into the recirculation zone, follows discrete spiral trajectories that terminate at the center of the vortex. The questions are what cause: (1) the unusual sooting structures and (2) the spiral trajectories of the soot? Flame photographs, laser sheet visualizations, and calculations with a 2D CFD-based code (UNICORN) are used to answer these questions. The different sooting structures are related to the spiral transport of the soot, the spatial location of the stoichiometric flame surface with respect to the vortex center, and the burnout of the soot particles. Computations indicate that the spiral trajectories of the soot particles are due to thermophoresis.  相似文献   

12.
The stochastic Eulerian field method is applied to simulate 12 turbulent C1?C3 hydrocarbon jet diffusion flames covering a wide range of Reynolds numbers and fuel sooting propensities. The joint scalar probability density function (PDF) is a function of the mixture fraction, enthalpy defect, scalar dissipation rate and representative soot properties. Soot production is modelled by a semi-empirical acetylene/benzene-based soot model. Spectral gas and soot radiation is modelled using a wide-band correlated-k model. Emission turbulent radiation interactions (TRIs) are taken into account by means of the PDF method, whereas absorption TRIs are modelled using the optically thin fluctuation approximation. Model predictions are found to be in reasonable agreement with experimental data in terms of flame structure, soot quantities and radiative loss. Mean soot volume fractions are predicted within a factor of two of the experiments whereas radiant fractions and peaks of wall radiative fluxes are within 20%. The study also aims to assess approximate radiative models, namely the optically thin approximation (OTA) and grey medium approximation. These approximations affect significantly the radiative loss and should be avoided if accurate predictions of the radiative flux are desired. At atmospheric pressure, the relative errors that they produced on the peaks of temperature and soot volume fraction are within both experimental and model uncertainties. However, these discrepancies are found to increase with pressure, suggesting that spectral models describing properly the self-absorption should be considered at over-atmospheric pressure.  相似文献   

13.
The influence of oxygen (O2) concentration and inert on the sooting and burning behavior of large ethanol droplets under microgravity conditions was investigated through measurements of burning rate, flame temperature, sootshell diameter, and soot volume fraction. The experiments were performed at the NASA Glenn Research Center (GRC) 2.2 s drop tower in Cleveland, OH. Argon (Ar), helium (He), and nitrogen (N2) were used as the inerts and the O2 concentration was varied between 21% and 50% mole fraction at 2.4 atm. The unique configuration of spherically symmetric droplet flames enables effective control of sooting over a wide range of residence time of fuel vapor transport, flame temperature, and regimes of sooting to investigate attendant influences on burning behavior of droplets. For all inert cases, soot volume fraction initially increased as a function of the O2 concentration. The highest soot volume fractions were measured for experiments in Ar environments and the lowest soot volume fractions were measured for the He environments. These differences were attributed to the changes in the residence time for fuel vapor transport and the flame temperature. For the He inert and N2 inert cases, the soot volume fraction began to decrease after reaching a maximum value. The competition between the influence of residence time, rate of pyrolysis reactions, and soot oxidation can lead to this interesting behavior in which the soot volume fraction varies non-monotonically with increase in O2 concentration. These experiments have developed new understanding of the burning and sooting behaviors of ethanol droplets under various O2 concentrations and inert substitutions.  相似文献   

14.
Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation.  相似文献   

15.
A computational study was performed for ethylene/air non-premixed laminar co-flow jet flames using an axisymmetric CFD code to explore the effect of oxygenation on PAH and soot emissions. Oxygenated flames were established using N2 diluted fuel stream along with O2 enriched air stream such that the stoichiometric mixture fraction (Ζst) is varied but the adiabatic flame temperature is not materially changed. Simulations were carried out using a spatially and temporally accurate algorithm with detailed chemistry and transport. A detailed kinetic model involving 111 species and 784 reactions and a fairly detailed soot model were incorporated into the code. Two different approaches, one with constant flame height and other with constant inlet velocity are comprehensively examined to bring out the effects of changes in flame structure and residence time on soot emissions with respect to Zst. With increase in Ζst, a drastic reduction in the formation of soot precursors (acetylene and benzene) and thus in soot emissions are observed. In the present study, oxygenated flames with Ζst ≥ 0.424 are considered as blue flames or completely soot free. For various oxygenated flames a C/O ratio between 0.45 and 0.6 is found to be most favorable for soot formation.  相似文献   

16.
n-Heptane has been used extensively in various fundamental combustion experiments as a prototypical hydrocarbon fuel. While the formation of polycyclic aromatic hydrocarbon (PAH) in n-heptane combustion has been studied preferably in premixed flames, this study aims to investigate the combustion chemistry of n-heptane in less-studied diffusion flame and highly rich high-temperature homogeneous oxidation configurations by using a counterflow burner and a flow reactor, respectively. This work addresses the formation of higher-molecular species in the mass range up to about 160 u in both configurations. Samples are analyzed by time-of-flight (TOF) molecular beam mass spectrometry (MBMS) using electron-impact (EI) and single-photon ionization (PI). Highly resolved speciation data are reported. Laminar flow reactor experiments cover a wide temperature range. Especially the measurements at low temperatures provide speciation data of large oxygenates produced in the low-temperature oxidation of n-heptane, which are scarce in the literature. Important precursor molecules for PAH and soot formation, such as C9H8, C10H8, C11H10, and C12H8, are formed during the high-temperature combustion process in the counterflow flame, while oxygenated growth species are observed under low-temperature conditions, even at the fuel-rich equivalence ratio of ?=4.00.Numerical modeling for both conditions is performed by using a newly developed kinetic model of n-heptane, which includes the n-heptane and PAH formation chemistry with state-of-the-art kinetic knowledge. Good agreement between model predictions and experimental data of counterflow flame and flow reactor is observed for the major species and some intermediates of n-heptane oxidation. While the concentrations of benzene and toluene measured in the counterflow burner are well-reproduced, the numerical results for flow reactor data are not satisfactory. Differences are found between the formation pathways of fulvene, from whose isomerization benzene is produced in diffusion flame and flow reactor.  相似文献   

17.
Laminar, sooting, ethylene-fuelled, co-flow diffusion flames at atmospheric pressure have been studied experimentally and theoretically as a function of fuel dilution by inert nitrogen. The flames have been investigated experimentally using a combination of laser diagnostics and thermocouple-gas sampling probe measurements. Numerical simulations have been based on a fully coupled solution of the flow conservation equations, gas-phase species conservation equations with complex chemistry and the dynamical equations for soot spheroid growth. Predicted flame heights, temperatures and the important soot growth species, acetylene, are in good agreement with experiment. Benzene simulations are less satisfactory and are significantly under-predicted at low dilution levels of ethylene. As ethylene dilution is decreased and soot levels increase, the experimental maximum in soot moves from the flame centreline toward the wings of the flame. Simulations of the soot field show similar trends with decreasing dilution of the fuel and predicted peak soot levels are in reasonable agreement with the data. Computations are also presented for modifications to the model that include: (i) use of a more comprehensive chemical kinetics model; (ii) a revised inception model; (iii) a maximum size limit to the primary particle size; and (iv) estimates of radiative optical thickness corrections to computed flame temperatures.  相似文献   

18.
Soot formation is a major challenge in the development of clean and efficient combustion systems based on hydrocarbon fuels. Fundamental understanding of the reaction mechanism leading to soot formation can be obtained by investigating the role of key reactive species such as atomic hydrogen taking part in soot formation pathways. In this study, two-dimensional laser induced incandescence (LII) measurements using λ?=?1064?nm laser have been used to measure soot volume fraction (fV) in a series of rich ethylene (C2H4)/air flames, stabilized over a McKenna burner fitted with a flame stabilizing metal disc. Moreover, a comparison of UV (λ?=?283?nm), visible (λ?=?532?nm) and IR (λ?=?1064?nm) laser excited LII measurements of soot is discussed. Recently developed, femtosecond two-photon laser-induced fluorescence (fs-TPLIF) technique has been applied for obtaining spatially resolved H-atom concentration ([H]) profiles under the same flame conditions. The structure of the flames has also been determined using hydroxyl radical (OH) planar laser induced fluorescence (PLIF) imaging. The results indicate an inverse dependence of fV on [H] for a range of C2H4/air rich flames up to an equivalence ratio, Φ?=?3.0. Although an absolute relationship between [H] and fV cannot be easily derived owing to the multiple steps involving H and other intermediate species in soot formation pathways, the present study demonstrates the feasibility to couple [H] and fV obtained using advanced optical techniques for soot formation studies.  相似文献   

19.
A comprehensive experimental study of the premixed benzene/oxygen/argon flame at 4.0 kPa with a fuel equivalence ratio (?) of 1.78 has been performed with the tunable synchrotron photoionization and molecular-beam sampling mass spectrometry. Isomers of most observed species in the flame have been unambiguously identified by measurements of the photoionization efficiency spectra. Mole fraction profiles of species up to C16H10 have been measured at the selective photon energies near ionization thresholds, and the flame temperature profile is obtained using Pt/Pt-13%Rh thermocouple. Compared with previous studies on benzene flames by Bittner and Howard, and by Defoeux et al., a number of new species are observed in the present work. These new combustion intermediates should be included in the kinetic models of the growth of polycyclic aromatic hydrocarbons (PAHs) and benzene oxidation. Free radicals detected in the flame include CH3, C2H, C2H3, C2H5, C3H, C3H3, C3H5, C4H, C4H3, C4H5, C4H7, C5H3, C5H5, C5H7, C6H5, C6H5O, C7H7, and C9H7. More significantly, isomers of some PAHs have been identified, which should be of importance in understanding the mechanism of soot formation.  相似文献   

20.
A combined computational and experimental investigation that examines the relationship of soot formation and NO in coflow ethylene air diffusion flames is presented. While both NO and soot formation are often studied independently, there is a need to understand their coupled relationship as a function of system parameters such as fuel type, temperature and pressure. The temperature decrease due to radiative losses in systems in which significant soot is produced can affect flame length and other temperature-dependent processes such as the formation of NO. The results of a computational model that includes a sectional representation for soot formation with a radiation model are compared against laser-induced fluorescence measurements of NO. The sooting characteristics of these flames have been studied previously. Experimentally, a laser near 225.8 nm is used to excite the γ(0, 0) band in NO. Spectrally resolved fluorescence emission is imaged radially, for the (0, 0), (0, 1), (0, 2), (0, 3), and (0, 4) vibrational bands, at varying axial heights to create a two-dimensional image of NO fluorescence. A reverse quenching correction is applied to the computational results to determine an expected fluorescence signal for comparison with experimental results. Modeling results confirm that Fenimore NO is the dominant mechanism for NO production and suggest that for lightly sooting flames (peak soot volume fraction < 0.5 ppm), soot reduces only the Zeldovich NO formation (by a factor of two). For flames with increased soot levels (peak soot volume fraction ∼ 4 ppm), the model indicates not only that Zeldovich NO decreases by a factor of 2.5 through radiation loss, but that non-Zeldovich NO is reduced in the top center of the flame by about 30% through the oxidation of soot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号