首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Ignition delay times and OH concentration time-histories were measured during n-dodecane oxidation behind reflected shocks waves using a heated, high-pressure shock tube. Measurements were made over temperatures of 727-1422 K, pressures of 15-34 atm, and equivalence ratios of 0.5 and 1.0. Ignition delay times were measured using side-wall pressure and OH emission diagnostics, and OH concentration time-histories were measured using narrow-linewidth ring-dye laser absorption near the R-branchhead of the OH A-X (0, 0) system at 306.47 nm. Shock tube measurements were compared to model predictions of four current n-dodecane oxidation detailed mechanisms, and the differences, particularly in the low-temperature negative-temperature-coefficient (NTC) region where the influence of non-ideal facility effects can be significant, are discussed. To our knowledge, the current measurements provide the first gas-phase shock tube ignition delay times (at pressures above 13 atm) and quantitative OH concentration time-histories for n-dodecane oxidation under practical engine conditions, and hence provide benchmark validation targets for refinement of jet fuel detailed kinetic modeling, since n-dodecane is widely used as the principal representative for n-alkanes in jet fuel surrogates.  相似文献   

2.
Recent literature has indicated that experimental shock tube ignition delay times for hydrogen combustion at low-temperature conditions may deviate significantly from those predicted by current detailed kinetic models. The source of this difference is uncertain. In the current study, the effects of shock tube facility-dependent gasdynamics and localized pre-ignition energy release are explored by measuring and simulating hydrogen-oxygen ignition delay times. Shock tube hydrogen-oxygen ignition delay time data were taken behind reflected shock waves at temperatures between 908 to 1118 K and pressures between 3.0 and 3.7 atm for two test mixtures: 4% H2, 2% O2, balance Ar, and 15% H2, 18% O2, balance Ar. The experimental ignition delay times at temperatures below 980 K are found to be shorter than those predicted by current mechanisms when the normal idealized constant volume (V) and internal energy (E) assumptions are employed. However, if non-ideal effects associated with facility performance and energy release are included in the modeling (using CHEMSHOCK, a new model which couples the experimental pressure trace with the constant V, E assumptions), the predicted ignition times more closely follow the experimental data. Applying the new CHEMSHOCK model to current experimental data allows refinement of the reaction rate for H + O2 + Ar ↔ HO2 + Ar, a key reaction in determining the hydrogen-oxygen ignition delay time in the low-temperature region.  相似文献   

3.
A new detailed kinetic model of soot formation in shock tube pyrolysis and oxidation of aliphatic and aromatic hydrocarbons is proposed. The model is based on the comprehensive kinetic model of PAH formation and growth [H. Richter, J.B. Howard, Phys. Chem. Chem. Phys. 4 (2002) 2038-2055; H. Richter, S. Granata, W.H. Green, J.B. Howard, Proc. Combust. Inst. 30 (2005) 1397-1405; J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122-136; M. Frenklach, D.W. Clary, T. Yuan, W.C. Gardiner, Jr., S.E. Stein, Combust. Sci. Tech. 50 (1986) 79-115; M. Frenklach, J. Warnatz, Combust. Sci. Tech. 51 (1987) 265-283; M.S. Skjøth-Rasmussen, P. Glarborg, M. Østberg, J.T. Johannessen, H. Livbjerg, A.D. Jensen, T.S. Christensen, Combust. Flame 136 (2004) 91-128], on the new concepts of soot particle nucleation [A. Violi, Combust. Flame 139 (2004) 279-287; A. Violi, A.F. Sarofim, G.A. Voth, Combust. Sci. Tech. 176 (2004) 991-1005; A. D’Alessio, A. D’Anna, P. Minutolo, L.A. Sgro, A. Violi, Proc. Combust. Inst. 28 (2000) 2547-2554; A. D’Anna, A. Violi, A.D’Alessio, A.F. Sarofim, Combust. Flame 127 (2001) 1995-2003] and the traditional H-abstraction/C2H2-addition (HACA) route of PAH and soot particles surface growth [H. Wang, M. Frenklach, Combust. Flame 110 (1997) 173-221; J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122-136]. The gas-phase kinetic scheme was validated against the experimentally measured concentration profiles of the main gas-phase species formed during toluene pyrolysis and H and OH radicals during benzene and phenol pyrolysis and toluene oxidation behind reflected shock waves. The model describes the main characteristics of soot formation in pyrolysis and oxidation of toluene and n-heptane oxidation under conditions typical of shock tube experiments. Both hydrocarbons have the same number of carbon atoms but different structures, which causes different behavior of the systems. The discrete Galerkin technique was applied for direct counting of the mean number of active sites formed on the surface of soot precursors and soot particles in reactions of activation, deactivation, and surface growth.  相似文献   

4.
Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.  相似文献   

5.
The prospects of 2,5-dimethylfuran (DMF) as a bio-derived fuel that can be blended with gasoline are believed to be impressive. However, the effects of blending DMF on the key combustion parameters like the laminar burning velocity and ignition delay time of gasoline/air mixture need to be studied extensively for the successful implementation of the fuel mixture in spark ignition engines. Therefore, a skeletal chemical kinetic mechanism, comprising of 999 reactions among 218 species, has been developed in the present work for this purpose. The proposed chemical kinetic model has been validated against a wide range of experimental data for the laminar burning velocity and ignition delay time of isooctane (representing gasoline), DMF and their blends. It has been found from the present study that the thermal diffusivity of the unburnt gas mixture changes by a very small amount from the corresponding value for the pure isooctane/air mixture when DMF is added. Unlike isooctane, the DMF molecule does not consume H radicals during its primary breakup. Therefore, the maximum laminar burning velocity increases marginally when 50% DMF is blended with isooctane due to the increased presence of H radicals in the flame. The negative temperature coefficient behaviour in the ignition delay time of the isooctane fuel vanishes when 30% DMF (v/v) is blended to it.  相似文献   

6.
Experimental data were acquired for: (1) the ignition temperatures of nitrogen–diluted ethylene and propylene by counterflowing heated air for various strain rates and system pressures up to 7 atm; (2) the laminar flame speeds of mixtures of air with acetylene, ethylene, ethane, propylene, and propane, deduced from an outwardly propagating spherical flame in a constant-pressure chamber, for extensive ranges of lean-to-rich equivalence ratio and system pressure up to 5 atm. These data, respectively, relevant for low- to intermediate-temperature ignition chemistry and high-temperature flame chemistry, were subsequently compared with calculated results using a literature C1–C3 mechanism and an ethylene mechanism. Noticeable differences were observed in the comparison for both mechanisms, and sensitivity analyses were conducted to identify the reactions of importance.  相似文献   

7.
Laminar flame speeds were accurately measured for CO/H2/air and CO/H2/O2/helium mixtures at different equivalence ratios and mixing ratios by the constant-pressure spherical flame technique for pressures up to 40 atmospheres. A kinetic mechanism based on recently published reaction rate constants is presented to model these measured laminar flame speeds as well as a limited set of other experimental data. The reaction rate constant of CO + HO2 → CO2 + OH was determined to be k = 1.15 × 105T2.278 exp(−17.55 kcal/RT) cm3 mol−1 s−1 at 300-2500 K by ab initio calculations. The kinetic model accurately predicts our measured flame speeds and the non-premixed counterflow ignition temperatures determined in our previous study, as well as homogeneous system data from literature, such as concentration profiles from flow reactor and ignition delay time from shock tube experiments.  相似文献   

8.
An experimental investigation of the oxidation of hydrogen diluted by nitrogen in presence of CO2 was performed in a fused silica jet-stirred reactor (JSR) over the temperature range 800-1050 K, from fuel-lean to fuel-rich conditions and at atmospheric pressure. The mean residence time was kept constant in the experiments: 120 ms at 1 atm and 250 ms at 10 atm. The effect of variable initial concentrations of hydrogen on the combustion of methane and methane/carbon dioxide mixtures diluted by nitrogen was also experimentally studied. Concentration profiles for O2, H2, H2O, CO, CO2, CH2O, CH4, C2H6, C2H4, and C2H2 were measured by sonic probe sampling followed by chemical analyses (FT-IR, gas chromatography). A detailed chemical kinetic modeling of the present experiments and of the literature data (flame speed and ignition delays) was performed using a recently proposed kinetic scheme showing good agreement between the data and this modeling, and providing further validation of the kinetic model (128 species and 924 reversible reactions). Sensitivity and reaction paths analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in absence and in presence of additives (CO2 and H2). The kinetic reaction scheme proposed helps understanding the inhibiting effect of CO2 on the oxidation of hydrogen and methane and should be useful for gas turbine modeling.  相似文献   

9.
Rotational coherent anti-Stokes Raman spectroscopy (CARS) has over the years demonstrated its strong potential to measure temperature and relative concentrations of major species in combustion. A recent work is the development and experimental validation of a CO2 model for thermometry, in addition to our previous rotational CARS models for other molecules. In the present work, additional calibration measurements for relative CO2/N2 concentrations have been made in the temperature range 294-1246 K in standardized CO2/N2 mixtures. Following these calibration measurements, rotational CARS measurements were performed in a laminar CO/air diffusion flame stabilized on a Wolfhard-Parker burner. High-quality spectra were recorded from the fuel-rich region to the surrounding hot air in a lateral cross section of the flame. The spectra were evaluated to obtain simultaneous profiles of temperature and concentrations of all major species; N2, O2, CO, and CO2. The potential for rotational CARS as a multi-species detection technique is discussed in relation to corresponding strategies for vibrational CARS.  相似文献   

10.
The microwave spectra of two isotopic species of acetyl isocyanate, 13CH3C(O)NCO and CD3C(O)NCO, were observed in order to determine the ro structure and confirmation of the molecular conformation. These isotopic species were prepared by reacting acetyl-2-13C-chloride or acetyl-d3 chloride with sliver cyanate. The rotational spectra of A-level in 26.5-60.0 GHz region have been observed by Stark-modulated microwave spectrometer. Some absorption lines in E-level were observed in 13CH3C(O)NCO. The rotational constants in the ground vibrational state were determined to be A = 10654.8(18), B = 2177.32(2), and C = 1827.65(2) MHz for 13CH3C(O)NCO, and A = 9713.90(6), B = 2042.04(2), and C = 1722.78(2) MHz for CD3C(O)NCO, respectively. The values of ΔI (= Ic − Ia − Ib) of the 13C species (−3.024(13) uÅ2) and the d3 species (−6.163(3) uÅ2) indicate that the molecule has Cs symmetry. The rs coordinates of the carbon atom in the methyl group were determined to be |a| = 2.183(3), |b| = 0.706(9), and |c| = 0.080(87) Å. The determined coordinates were in agreement with those calculated for the cis form, in which the carbonyl group is eclipsed by the NCO group. The six structural parameters of the cis form were adjusted by fitting to the observed rotational constants. The observed rotational constants of the cis form were in better agreement with those calculated using the QCISD/6-31G (d, p) level rather than those calculated using the MP2/6-31G (d, p) level. The barrier of internal rotation of the methyl group was determined as 4.283(16) kJ mol−1 in 13CH3C(O)NCO. The structural tendencies and the relationship between RNC and 14N quadrupole coupling constants (χcc) were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号