首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X.J. Zhou 《Surface science》2006,600(2):468-477
The room temperature (RT) chemisorption of three (iso, cis and trans) isomers of dichloroethylene (DCE) on Si(1 0 0)2 × 1 have been investigated by X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). Unlike ethylene, the lack of molecular desorption features in the TPD data effectively rules out the cycloaddition adsorption mechanism for all three isomers. XPS spectra show that cis- and trans-DCE adsorb dissociatively on the 2 × 1 surface in equal proportion as mono-σ bonded 2-chlorovinyl and di-σ bonded vinylene adspecies, which could be produced by dechlorination mechanisms involving the proposed tri-atom π-complex and diradical intermediates, respectively. Acetylene (m/z 26) evolution from 2-chlorovinyl adspecies at 590 K and vinylene at 750 K are also observed for both cis- and trans-DCE, further confirming the common adsorption mechanisms for these geometrical isomers and the relative stabilities of the adspecies. In contrast, only vinylidene adspecies is found for iso-DCE, which indicates that the high ionicity of the CCl2 group favours the diradical dechlorination mechanism. The single m/z 26 desorption peak for iso-DCE adspecies observed at a higher temperature (780 K) than cis and trans isomers is consistent with the higher adsorption energy of vinylidene than vinylene on Si(1 0 0) obtained in our ab initio calculations. The different relative locations of the Cl atoms in these isomers therefore play a crucial role in controlling the adsorption and thermal evolution on Si(1 0 0)2 × 1. The selective reactivity of the 2 × 1 surface towards these isomers can be used to generate vinylene or vinylidene templates from their corresponding adspecies.  相似文献   

2.
Zhenhua He 《Surface science》2006,600(3):514-526
The room-temperature adsorption and thermal evolution of iso-, cis- and trans-dichloroethylene (DCE) on Si(1 1 1)7 × 7 have been studied by vibrational electron energy loss spectroscopy and thermal desorption spectrometry (TDS). The presence of the Si-Cl stretch at 510 cm−1 suggests that, upon adsorption, all three isomers dissociate via C-Cl bond breakage on the 7 × 7 surface to form mono-σ bonded chlorovinyl , which could, in the case of iso-DCE, further dechlorinate to vinylidene (:CCH2) upon insertion into the back-bond. The higher saturation exposure for the Si-Cl stretch at 510 cm−1 observed for cis- and trans-DCE than iso-DCE suggests that Cl dissociation via the CHCl group in the cis and trans isomers is less readily than the CCl2 group in iso-DCE. Our TDS data show remarkable similarities in both molecular desorption near 360 K and thermal evolution of the respective adstructures for all three isomers on Si(1 1 1)7 × 7. In particular, upon annealing to 450 K, the mono-σ bonded chlorovinyl adspecies is found to further dechlorinate to either vinylene di-σ bonded to the Si surface or acetylene to be released from the surface. Above 580 K, vinylene could also become gaseous acetylene or undergo H abstraction to produce hydrocarbon or SiC fragments. All three DCE isomers also exhibit TDS features attributable to an etching product SiCl2 at 800-950 K and recombinative desorption products HCl at 700-900 K and H2 at 650-820 K. The stronger Cl-derived TDS signals and Si-Cl stretch at 510 cm−1 over 450-820 K for trans-DCE than those for cis-DCE indicate stronger dechlorination for trans-DCE than cis-DCE, which could be due to less steric hindrance resulting from the formation of the chlorovinyl adspecies for trans-DCE during the initial adsorption/dechlorination process. Finally, our density functional calculations qualitatively support the thermodynamic feasibility and relative stabilities of the proposed adstructures involving chlorovinyl, vinylidene, and vinylene adspecies.  相似文献   

3.
A comparative reactivity study of 1-alkene fuels from ethylene to 1-heptene has been performed using ignition delay time (IDT) measurements from both a high-pressure shock tube and a rapid compression machine, at an equivalence ratio of 1.0 in ‘air’, at a pressure of 30 atm in the temperature range of 600–1300 K. At low temperatures (< 950 K), the results show that 1-alkenes with longer carbon chains show higher fuel reactivity, with 1-pentene being the first fuel to show negative temperature coefficient (NTC) behavior followed by 1-hexene and 1-heptene. At high temperatures (> 950 K), the experimental results show that all of the fuels except propene show very similar fuel reactivity, with the IDTs of propene being approximately four times longer than for all of the other 1-alkenes. To analyze the experimental results, a chemistry mechanism has been developed using consistent rate constants for these alkenes. At 650 K, flux analyses show that hydroxyl radicals add to the double bond, followed by addition to molecular oxygen producing hydroxy?alkylperoxy radicals, which can proceed via the Waddington mechanism or alternate internal H-atom isomerizations in chain branching similar to those for alkanes. We have found that the major chain propagation reaction pathways that compete with chain branching pathyways mainly produce hydroxyl rather than hydroperoxyl radicals, which explains the less pronounced NTC behavior for larger 1-alkenes compared to their corresponding alkanes. At 1200 K, flux analyses show that the accumulation of hydroperoxyl radicals is important for the auto-ignition of 1-alkenes from propene to 1-heptene. The rate of production of hydroperoxyl radicals for 1-alkenes from 1-butene to 1-heptene is higher than that for propene, which is due to the longer carbon chain facilitating hydroperoxyl radical formation via more efficient reaction pathways. This is the major reason that propene presents lower fuel reactivity than the other 1-alkenes at high temperatures.  相似文献   

4.
The high quality Vanadium dioxide (VO2) thin films have been fabricated successfully on sapphire by a simple novel sputtering oxidation coupling (SOC) method. All VO2 thin film samples exhibit a good metal-insulator transition (MIT) at about 340 K. The optimal oxidation time at different temperatures has been experimentally investigated. We report on the relationship between optimal oxidation time and different temperatures of metal vanadium thin film samples of 101 nm thickness by oxidation in air. It is found that the optimal oxidation time ln(t) as a function of temperature 1/T shows a significant linear relationship among 703 K-783 K, in good agreement with the Wagner's high-temperature oxidation model.  相似文献   

5.
Stilbene (1,2-diphenylethylene) has shown an intriguing isomerisation behavior and may serve as a model system for “molecular switches” incorporating a CC double bond. To evaluate the possible use of such molecules as molecular switches on semiconductor surfaces, the adsorption of cis- and trans-stilbene on Si(1 0 0) has been investigated. Identification of both isomers is achieved by differences in adsorption geometry as revealed by NEXAFS, and differences in electronic structure in the occupied and unoccupied molecular orbitals. For both isomers, bonding takes place via the CC double bond to the Si dimer atoms allowing for free movement of the aromatic rings, a necessary prerequisite for photoinduced isomerisation on the surface. Our experimental results agree well with theoretical calculations.  相似文献   

6.
A.P. Farkas  F. Solymosi 《Surface science》2006,600(11):2355-2363
The adsorption and surface reactions of propyl iodide on clean and potassium-modified Mo2C/Mo(1 0 0) surfaces have been investigated by thermal desorption spectroscopy (TPD), X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HREELS) in the 100-1200 K temperature range. This work is strongly related to the better understanding of the catalytic effect of Mo2C in the conversion of hydrocarbons. Potassium was found to be an effective promoter: it induced the rupture of C-I bond in the adsorbed C3H7I even at 100 K. The extent of C-I bond scission varied approximately linearly with the concentration of K coverage at the adsorption temperature of 100 K. As revealed by HREELS and TPD measurements the primary products of the dissociation are C3H7 and I. The former one was stabilized by potassium and underwent dehydrogenation and hydrogenation to give propene and propane. The desorption of both compounds is reaction-limited process. A fraction of propyl groups was converted into di-σ-bonded propene, which was stable up to ∼380 K. The coupling reaction of propyl species was also facilitated by potassium and resulted in the formation of hexane and hexene with Tp ∼ 230-250 K. Hydrogen was released with Tp = 390 K, indicative of a desorption limited process. The effect of potassium was explained by the extended electron donation to adsorbed propyl iodide in one hand, and by the direct interaction between potassium and I on the other hand. This was reflected by the shift of the desorption of potassium from the coadsorbed layer at and above 1.0 ML to higher temperature, and by the coincidal Tp values (∼700 K) of potassium and iodine. The formation of KI was also supported by the appearance of a loss feature at 650 cm−1 in the HREEL spectra attributed to a phonon mode of KI.  相似文献   

7.
The oxidation of the W(1 0 0) surface at elevated temperatures has been studied using room temperature STM and LEED. High exposure of the clean surface to O2 at 1500 K followed by flash-annealing to 2300 K in UHV results in the formation of a novel p(3 × 1) reconstruction, which is imaged by STM as a missing-row structure on the surface. Upon further annealing in UHV, this surface develops a floreted LEED pattern characteristic of twinned microdomains of monoclinic WOx, while maintaining the p(3 × 1) missing-row structure. Atomically resolved STM images of this surface show a complex domain structure with single and double W〈0 1 0〉 rows coexisting on the surface in different domains.  相似文献   

8.
The autoignition of a series of C4 to C8 fatty acid methyl esters has been studied in a rapid compression machine in the low and intermediate temperature region (650-850 K) and at increasing pressures (4-20 bar). Methyl hexanoate was selected for a full investigation of the autoignition phenomenology, including the identification and determination of the intermediate products of low temperature oxidation. The oxidation scheme and overall reactivity of methyl hexanoate has been examined and compared to the reactivity of C4 to C7n-alkanes in the same experimental conditions to evaluate the impact of the ester function on the reactivity of the n-alkyl chain. The low temperature reactivity leading to the first stage of autoignition is similar to n-heptane. However, the negative temperature coefficient region is located at lower temperature than in the case of the n-alkanes of corresponding reactivity. An evaluation of the distribution of esteralkyl radicals R and esteralkylperoxy radicals ROO gives an insight into the main reaction pathways.  相似文献   

9.
The oxidation of several mixtures of surrogate for gasoline was studied using a jet stirred reactor and a shock tube. One representative of each classes constituting gasoline was selected: iso-octane, toluene, 1-hexene and ethyl tert-butyl ether (ETBE). The experiments were carried out in the 800-1880 K temperature range, for two different initial pressures (0.2 and 1 MPa), with an initial fuel molar fraction of 0.001. The equivalence ratio varied from 0.5 to 1.5. Each hydrocarbon sub-mechanism was validated using shock tube data. The full mechanism describing the surrogate fuel oxidation is constituted of the sub-mechanisms for each fuel components and by adding interaction reactions between different hydrocarbon fragments. Good agreement between the experimental results and the computations was observed under JSR and shock tube conditions.  相似文献   

10.
Unsaturated aldehydes such as butenal are essential intermediates in the combustion of various alkenes and oxygenated biofuels. 2-Butenal is a typical intermediate included in the core mechanism, containing a C=C double bond adjacent to an aldehyde group. In the present work, the oxidation of 2-butenal is studied in a jet-stirred reactor (JSR) at atmospheric pressure under temperature ranging from 500 to 850 K. The synchrotron vacuum ultraviolet photoionization mass spectrometry is employed to identify the key intermediates. A kinetic model for 2-butenal oxidation is developed and validated against the experimental datasets. Fuel flux and sensitivity analyses are performed to clarify reactions governing the reactivity of 2-butenal. OH addition to the C=C double bond is essential for fuel reactivity at the initial stage. A combination of experimental observations and kinetic simulations is used to illuminate the Waddington mechanism initiated by OH addition. The resonance-stabilized feature of fuel radicals facilitates their interactions with HO2 radicals, which replenishes a large amount of OH radicals and contributes to the formation of CO2.  相似文献   

11.
The chemical behaviour of 3-hexyne on oxygen modified Ru(0 0 1) surfaces has been analysed under ultrahigh-vacuum, using reflection-absorption infrared spectroscopy (RAIRS). The effects of oxygen coverage, 3-hexyne exposure and adsorption temperature were studied. Two modified Ru(0 0 1) surfaces were prepared: Ru(0 0 1)-(2 × 2)-O and Ru(0 0 1)-(2 × 1)-O that correspond to oxygen coverages (θO) of 0.25 and 0.5 ML, respectively. The striking result is the direct bonding to an O atom when the modified surfaces are exposed to a very low dose (0.2 L) of 3-hexyne at low temperature (100 K). For θO = 0.25 ML, an unsaturated oxametallacycle [Ru-O-C(C2H5)C(C2H5)-Ru] is proposed, identified by RAIRS for the first time, through the νCC and νCO modes. Further decomposition at 110 K yields smaller oxygenated intermediates, such as acetyl [μ32(C,O)-CH3CO], co-adsorbed with a small amount of carbon monoxide and non-dissociated species. The temperature at which a fraction of molecules undergoes complete C-C and C-H bond breaking is thus much lower than on clean Ru(0 0 1). The ultimate decomposition product observed by RAIRS at 220 K is methylidyne [CH]. Another key observation was that the adsorption temperature is not determinant of the reaction route, contrarily to what occurs on clean Ru(0 0 1): even when 3- hexyne strikes the surface at a rather high temperature (220 K), the multiple bond does not break completely. For θO = 0.5 ML, a saturated oxametallacycle [Ru-O-CH(C2H5)-CH(C2H5)-Ru] is also proposed at 100 K, identified by the νasO-C-C (at 1043 cm−1) and νsO-C-C (at 897 cm−1) modes, showing that some decomposition with C-H bond breaking occurs. For this oxygen coverage, the reaction temperatures are lower, and the intermediate surface species are less stable.  相似文献   

12.
K.L. Man  M.S. Altman 《Surface science》2006,600(5):1060-1070
The growth and oxidation of Cr films on the W(1 0 0) surface have been studied with low energy electron microscopy (LEEM) and diffraction (LEED). Cr grows in a Stranski-Krastanov (SK) mode above about 550 K and in a kinetically limited layer-by-layer mode at lower temperature. Stress relief in the highly strained pseudomorphic (ps) Cr film appears to be achieved by the formation of (4 × 4) periodic inclusions during the growth of the third layer between 575 and 630 K and by growth morphological instabilities of the third layer at higher temperature. Kinetic or stress-induced roughening is observed at lower temperature. In the SK regime, three-dimensional (3D) Cr islands nucleate after the growth of three Cr layers. 3D island nucleation triggers dewetting of one layer from the surrounding Cr film. Thus, two ps Cr layers are thermodynamically stable. However, one and two layer ps Cr films are unstable during oxidation. 3D clusters, that produce complex diffraction features and are believed to be Cr2O3, are formed during oxidation of one Cr layer at elevated temperature, T ? 790 K. The single layer Cr film remains intact during oxidation at T ? 630 K. 3D bulk Cr clusters are formed predominantly during oxidation of two ps Cr layers.  相似文献   

13.
H. Over  O. Balmes 《Surface science》2009,603(2):298-766
Applying in situ surface X-ray diffraction (SXRD) together with on-line mass spectrometry during the CO oxidation over Ru(0 0 0 1) allows a direct comparison of the reactivity of the non-oxidic state with that of the RuO2(1 1 0) covered surface. This comparison reveals that the RuO2(1 1 0) surface is a catalytically active phase at least as active as the non-oxidic phase. At high CO and O2 pressures of 200 mbar and temperatures above 550 K, the CO oxidation reaction does not proceed isothermally on the RuO2(1 1 0) surface. The released reaction heat leads rather to an increase of the sample temperature of up to 130 K accompanied by a self-acceleration of the CO oxidation reaction.  相似文献   

14.
Ignition delay times of cyclohexane-oxygen-argon and cyclopentane-oxygen-argon mixtures have been measured in a shock tube, the onset of ignition being detected by OH radical emission. Mixtures contained 0.5 or 1% of hydrocarbon for values of the equivalence ratio ranging from 0.5 to 2. Reflected shock waves allowed temperatures from 1230 to 1840 K and pressures from 7.3 to 9.5 atm to be obtained. These measurements have shown that cyclopentane is much less reactive than cyclohexane, as for a given temperature the observed autoignition delay times were about 10 times higher for the C5 compound than for the C6. Detailed mechanisms for the combustion of cyclohexane and cyclopentane have been proposed to reproduce these results. The elementary steps included in the kinetic models of the oxidation of cyclanes are close to those proposed to describe the oxidation of non cyclic alkanes and alkenes. Consequently, it has been possible to obtain these models by using an improved version of the EXGAS software, a computer package for the automatic generation of detailed kinetic models for the gas-phase combustion of alkanes and alkenes. Nevertheless, the modeling of the oxidation of cyclanes requires new types of generic reactions to be considered, and especially to define new correlations for the estimation of the rate constants. Quantum chemical calculations have been used to improve the estimation of some sensitive rate constants in the case of cyclopentane. The main reaction pathways have been derived from flow rate and sensitivity analysis.  相似文献   

15.
Cyclopentadienyl (CPDyl) was generated for study by oxidizing and pyrolizing 1,3-cyclopentadiene (CPD) in Princeton’s adiabatic, atmospheric pressure flow reactor. This study used nitrogen carrier gas, initial CPD concentrations from 1000 to 3000 ppm by volume (ppmv), equivalence ratios from fuel lean (? = 0.6) to pyrolytic conditions (? = 100) and initial temperatures from 1100 to 1200 K. The reaction progress was followed from 5 to 150 ms using a water cooled sample probe and GC-FID analysis of C1-C14 species. The oxidation results show that CPD and CPDyl react via 19 pathways to yield 22 hydrocarbon intermediates. Analysis of the oxidative CPDyl ring opening pathways reveals the importance of the 2,4-cyclopentadienoxy (c-C5H5O) β-scission reaction: c-C5H5O ↔ CHCH-CHCH-CHO. The fastest theoretical mechanism has a calculated unimolecular high-pressure rate constant of 2.00 × 1013e−7215/T s−1 which is seven orders of magnitude larger at 1150 K than the previous literature estimate. Cyclopentadienone (CPDone) has been assumed to be an important intermediate in C5 ring oxidation even though it has not been unambiguously identified in the combustion environment. A detection limit of 20 ppmv for CPDone in the present apparatus failed to note any CPDone. A set of mechanistic pathways for the C5 ring oxidation includes steps to avoid unrealistic CPDone production is presented. The complex mechanism illustrates the need for detailed models to understand the combustion of aromatics and soot precursors. The article stresses the importance of CPDyl in the formation of aromatic rings during combustion, which subsequently leads to polycyclic aromatic hydrocarbons (PAH) and soot precursors.  相似文献   

16.
The oxidation of nickel single crystals is investigated by using variable charge molecular dynamics. The simulations are performed on three nickel low-index surfaces ((1 0 0), (1 1 0) and (1 1 1)) at temperatures between 300 K and 950 K. The results show that the shape of the oxidation kinetics is independent of the crystallographic orientation and the temperature under the present conditions. The oxide thin film grows according to an island growth mode, this initial stage of oxidation can be divided in three steps: (i) the dissociative chemisorption step (ii) the oxide island nucleation and (iii) the lateral growth of the island. The first step is slowdown/speedup by the surface orientation and temperature. Finally, the simulations show the onset of an oxide layer.  相似文献   

17.
S.H. Xu  Z.H. He 《Applied Surface Science》2007,253(23):9221-9227
The room temperature (RT) adsorption and thermal evolution of cis- and trans-dichloroethylene (DCE) and their structural isomer, iso-DCE, on Ni(1 0 0) have been studied by vibrational electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES) and thermal desorption spectrometry (TDS). For RT adsorption, both cis- and trans-DCE exhibit very similar EELS features that are different from those found for iso-DCE. These differences indicate the formation of different fragments upon RT adsorption. In particular, the primary adspecies for cis- and trans-DCE are ethane-1,1,2,2-tetrayl () and acetylide-like () adspecies along with a small amount of chlorovinyl adspecies, while ethylylidyne () is the more plausible adspecies for iso-DCE. The differences in the adstructures upon dissociative adsorption at RT underline the important isomeric effects. Furthermore, both AES and TDS results for all three DCE isomers show that most of the Cl atoms produced by dechlorination remain on the surface and its surface concentration remains unchanged upon annealing the samples above 500 K. Upon further annealing to 550 K, the EELS spectra of all three isomers exhibit a broad feature near 1600 cm−1, which suggests the formation of carbon clusters on the surface. The presence of surface Cl atoms therefore appears to prevent the CC bond cleavage during thermal evolution of the adspecies on Ni(1 0 0).  相似文献   

18.
The heats of adsorption of different C1 and C2 molecules assumed to be present during the initial steps of the Fischer-Tropsch synthesis and activation energies for elementary steps envisioned to occur in the synthesis are calculated for Co by using the unity bond index-quadratic exponential potential (UBI-QEP) method. The preexponential factors for the elementary steps are calculated from transition-state theory, and the rate constants are calculated according to the Arrhenius equation. The activation barrier for hydrogenation of CO is found to be lower compared to hydrogen assisted dissociation of CO, which has a smaller activation barrier than direct dissociation of CO. The reaction steps with high activation barriers are eliminated. Based on this elimination two sets of elementary steps for formation of C1 and C2 alkenes and alkanes in the Fischer-Tropsch synthesis are established: one based on hydrogen assisted CO dissociation (carbide mechanism) and one based on CO hydrogenation (CO insertion mechanism). In addition, one mechanism of producing CO2 from the water-gas shift reaction is proposed. The resulting mechanisms are combined and used in the microkinetic model, which are fitted to experimental results at methanation conditions (T = 483 K or 493 K, p = 1.85 bar and H2/CO = 10) over a Co/Al2O3 Fischer-Tropsch catalyst. A good tuning is obtained by adjusting the C-Co and H-Co binding strengths. The microkinetic modelling based on these assumptions indicates that CO is mainly converted through hydrogenation of CO and that C2 compounds are mainly produced by insertion of CO into a metal-methyl bond. Thus, from the surface coverages and reaction rates predicted by the microkinetic modelling the mechanism can be further reduced to only include the CO insertion mechanism. Hydrogenation of CHO to CH2O is found to be the rate determining initiation step, and insertion of CO into a metal-methyl bond is found to be the rate determining step for chain growth. By using the UBI-QEP method for calculation of activation energies, the activation barriers for dissociation of CO and hydrogenation of surface carbon are found to be too large for the carbide mechanisms to occur. However, experimental data or another theoretical method is necessary in order to support or disprove the calculated activation energies in this work.  相似文献   

19.
In order to better understand the low-temperature oxidation chemistry of alkenes, 1-butene and i-butene oxidation experiments triggered by dimethyl ether (DME) were conducted in a jet-stirred reactor at 790 Torr, 500–725 K and the equivalence ratio of 0.35. Low-temperature oxidation intermediates involved in alcoholic radical chemistry and allylic radical chemistry were detected by using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). To better interpret the experimental data, a kinetic model was proposed based on our low-temperature oxidation model of DME and comprehensive oxidation models of 1-butene and i-butene in literature. Based on present experimental results and modeling analysis, alcoholic radical chemistry initiated by OH addition is mainly responsible for the low-temperature chain propagation of butenes, since the Waddington mechanism plays a dominant role compared with the chain-branching pathways through the second O2 addition. Allylic radical+HO2 reactions producing alkenyl hydroperoxides and fuel+O2 serve as the major chain-branching and chain-termination pathways, respectively, and they are competitive in the negative temperature coefficient (NTC) region. In contrast, chain-branching pathways originating from allylic radical+O2 and alkyl-like radical+O2 reactions have little contribution to the OH formation. Comparison with the simulation results of butane/DME mixtures demonstrates that butenes can largely inhibit the reactivity of DME at low temperatures due to its reduced low-temperature chain-branching process. However, in the NTC region, butenes may not be good OH absorbents since the allylic radicals can convert HO2 to OH and consequently enhance the oxidation reactivity.  相似文献   

20.
The quadratic, cubic and semi-diagonal quartic force field of nitric acid has been calculated at the CCSD(T) level of theory employing a basis set of triple-ζ quality. A semi-experimental equilibrium structure has been derived from experimental ground state rotational constants and rovibrational interaction parameters calculated from the ab initio force field. It is found that the A and B semi-experimental equilibrium rotational constants of the 18O isotopologues (for which the rotation of principal axes is large) cannot be accurately reproduced. This problem is discussed and a remedy is proposed. Finally, the semi-experimental structure is in agreement with the ab initio structure calculated at the CCSD(T) level of theory using a basis set of at least quadruple-ζ quality and a core correlation correction, except for the long NO single bond for which the CCSD(T) value is too short due to inadequate treatment of electron correlation. The empirical structures are also determined and their accuracy is discussed. The best equilibrium structure is: re(NOsyn) = 1.209(1) Å, re(NOanti) = 1.194(1) Å, re(NO) = 1.397(1) Å, re(OH) = 0.968(1) Å, (ONOsyn) = 115.8(1)°, (ONOanti) = 114.2(1)° and (NOH) = 102.2(1)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号