首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent literature has indicated that experimental shock tube ignition delay times for hydrogen combustion at low-temperature conditions may deviate significantly from those predicted by current detailed kinetic models. The source of this difference is uncertain. In the current study, the effects of shock tube facility-dependent gasdynamics and localized pre-ignition energy release are explored by measuring and simulating hydrogen-oxygen ignition delay times. Shock tube hydrogen-oxygen ignition delay time data were taken behind reflected shock waves at temperatures between 908 to 1118 K and pressures between 3.0 and 3.7 atm for two test mixtures: 4% H2, 2% O2, balance Ar, and 15% H2, 18% O2, balance Ar. The experimental ignition delay times at temperatures below 980 K are found to be shorter than those predicted by current mechanisms when the normal idealized constant volume (V) and internal energy (E) assumptions are employed. However, if non-ideal effects associated with facility performance and energy release are included in the modeling (using CHEMSHOCK, a new model which couples the experimental pressure trace with the constant V, E assumptions), the predicted ignition times more closely follow the experimental data. Applying the new CHEMSHOCK model to current experimental data allows refinement of the reaction rate for H + O2 + Ar ↔ HO2 + Ar, a key reaction in determining the hydrogen-oxygen ignition delay time in the low-temperature region.  相似文献   

2.
The ignition delay times of diluted hydrogen/reference gas (92% methane, 8% ethane)/O2/Ar mixtures with hydrogen contents of 0%, 40%, 80% and 100% were determined in a high-pressure shock tube at equivalence ratios ? = 0.5 and 1.0 (dilution 1:5). The temperature range was 900 K ? T ? 1800 K at pressures of about 1, 4 and 16 bar.The reference gas and the 40% hydrogen/60% reference gas data showed typical characteristics of hydrocarbon systems and can be represented by:
  相似文献   

3.
Ignition-delay times were measured in shock-heated gases for a surrogate gasoline fuel comprised of ethanol/iso-octane/n-heptane/toluene at a composition of 40%/37.8%/10.2%/12% by liquid volume with a calculated octane number of 98.8. The experiments were carried out in stoichiometric mixtures in air behind reflected shock waves in a heated high-pressure shock tube. Initial reflected shock conditions were as follows: Temperatures of 690-1200 K, and pressures of 10, 30 and 50 bar, respectively. Ignition delay times were determined from CH chemiluminescence at 431.5 nm measured at a sidewall location. The experimental results are compared to simulated ignition delay times based on detailed chemical kinetic mechanisms. The main mechanism is based on the primary reference fuels (PRF) model, and sub-mechanisms were incorporated to account for the effect of ethanol and/or toluene. The simulations are also compared to experimental ignition-delay data from the literature for ethanol/iso-octane/n-heptane (20%/62%/18% by liquid volume) and iso-octane/n-heptane/toluene (69%/17%/14% by liquid volume) surrogate fuels. The relative behavior of the ignition delay times of the different surrogates was well predicted, but the simulations overestimate the ignition delay, mostly at low temperatures.  相似文献   

4.
The need for more efficient power cycles has attracted interest in super-critical CO2 (sCO2) cycles. However, the effects of high CO2 dilution on auto-ignition at extremely high pressures has not been studied in depth. As part of the effort to understand oxy-fuel combustion with massive CO2 dilution, we have measured shock tube ignition delay times (IDT) for methane/O2/CO2 mixtures and hydrogen/O2/CO2 mixtures using sidewall pressure and OH* emission near 306?nm. Ignition delay time was measured in two different facilities behind reflected shock waves over a range of temperatures, 1045–1578?K, in different pressures and mixture regimes, i.e., CH4/O2/CO2 mixtures at 27–286 atm and H2/O2/CO2 mixtures at 37–311 atm. The measured data were compared with the predictions of two recent kinetics models. Fair agreement was found between model and experiment over most of the operating conditions studied. For those conditions where kinetic models fail, the current ignition delay time measurements provide useful target data for development and validation of the mechanisms.  相似文献   

5.
Ignition times and autoignition modes for propane–air mixtures have been studied behind reflected shock waves. Experiments were performed over temperatures between 1000 and 1750 K, pressures between 2 and 20 atm, and equivalence ratios of = 0.5, 1.0, and 2.0. Ignition delay times were determined using pressure measurements, C2 emission profiles, and luminosity measurements in the visible spectrum (380–680 nm). Empirical correlations for ignition time for low temperature (1000–1300 K) and high temperature (1300–1800 K) ranges have been deduced from the experimental data. Different autoignition modes of the mixture (strong, transient, and weak) were identified by comparing velocities of reflected shock wave at different distances from the reflecting wall.  相似文献   

6.
Shock tube experiments and chemical kinetic modeling were performed to further understand the ignition and oxidation kinetics of various methane-propane fuel blends at gas turbine pressures. Ignition delay times were obtained behind reflected shock waves for fuel mixtures consisting of CH4/C3H8 in ratios ranging from 90/10% to 60/40%. Equivalence ratios varied from lean (? = 0.5), through stoichiometric to rich (? = 3.0) at test pressures from 5.3 to 31.4 atm. These pressures and mixtures, in conjunction with test temperatures as low as 1042 K, cover a critical range of conditions relevant to practical turbines where few, if any, CH4/C3H8 prior data existed. A methane/propane oxidation mechanism was prepared to simulate the experimental results. It was found that the reactions involving CH3O˙, CH32, and ?H3 + O2/HO˙2 chemistry were very important in reproducing the correct kinetic behavior.  相似文献   

7.
Shock tube experiments and chemical kinetic modeling were carried out on 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene, the two isomers of diisobutylene, a compound intended for use as an alkene component in a surrogate diesel. Ignition delay times were obtained behind reflected shock waves at 1 and 4 atm, and between temperatures of 1200 and 1550 K. Equivalence ratios ranging from 1.0 to 0.25 were examined for the 1-pentene isomer. A comparative study was carried out on the 2-pentene isomer and on the blend of the two isomers. It was found that the 2-pentene isomer ignited significantly faster under shock tube conditions than the 1-pentene isomer and that the ignition delay times for the blend were directly dependant on the proportions of each isomer. These characteristics were successfully predicted using a detailed chemical kinetic mechanism. It was found that reactions involving isobutene were important in the decomposition of the 1-pentene isomer. The 2-pentene isomer reacted through a different pathway involving resonantly stabilized radicals, highlighting the effect on the chemistry of a slight change in molecular structure.  相似文献   

8.
Toluene pyrolysis in high temperature/high pressure argon atmosphere has been studied in a conventional diaphragm-type shock tube. The investigated ranges of temperature and pressure were 1500–2300 K and 8–13 bar, respectively. Extinction measurements in the near infrared have been carried out to follow the formation of carbonaceous particulate (soot). Pyrolysis products were optically characterized by absorption measurements in the wavelength range 300–800 nm, with high time/spectral resolution. The application of Tauc analysis to the absorption spectra allowed to identify three levels of energy gap; they have been attributed to carbonaceous structures with 3–5 and 7–9 fused aromatic rings, and to soot particles.  相似文献   

9.
The two-channel thermal decomposition of toluene, C6H5CH3 → C6H5CH2 + H (1) and C6H5CH3 → C6H5 + CH3 (2), was investigated in shock tube experiments over the temperature range of 1400-1780 K at a pressure of 1.5 (±0.1) bar. Rate coefficients for reactions (1) and (2) were determined by monitoring benzyl radical (C6H5CH2) absorption at 266 nm during the decomposition of toluene diluted in argon and modeling the temporal behavior of the benzyl concentration with a kinetic model. The first-order rate coefficients determined at a pressure of 1.5 bar are expressed by k1(T) = 2.09 × 1015 exp (−87510 [cal/mol]/RT) [s−1] and k2(T) = 2.66 × 1016 exp (−97880 [cal/mol]/RT) [s−1]. The resulting branching ratio, k1/(k1 + k2), ranges from 0.8 at 1350 K to 0.6 at 1800 K.  相似文献   

10.
The high pressure oxidation of dilute CO mixtures doped with 150-200 ppm of H2 has been studied behind reflected shock waves in the UIC high pressure single pulse shock tube. The experiments were performed over the temperature range from 1000 to 1500 K and pressures spanning 21-500 bars for stoichiometric (Φ = 1) and fuel lean (Φ = 0.5) oxidation. Stable species sampled from the shock tube were analyzed by standard GC, GC/MS techniques. The experimental data obtained in this work were simulated using a detailed model for H2/CO combustion that was validated against a variety of experimental observables/targets that span a wide range of conditions. These simulations have shown that within experimental error the model is able to capture the experimental trends for the lower pressure data sets (average nominal pressures of 24 and 43 bars). However the model under predicts the CO and O2 decay and subsequent CO2 formation for the higher pressure data sets (average nominal pressures of 256 and 450 bars). The current elevated pressure data sets span a previously unmapped regime and have served to probe HO2 radical reactions which appear to be among the most sensitive reactions in the model under these conditions. With updated rate parameters for a key HO2 radical reaction OH + HO2 = H2O + O2, the model is able to reconcile the elevated pressure data sets thereby extending its capability to an extreme range of conditions.  相似文献   

11.
Ammonia (NH3) is considered as a promising carbon free energy carrier for energy and transportation systems. However, its low flammability and high NOx emission potential inhibit the implementation of pure NH3 in these systems. On the other hand, methane is a favorable low emission fuel that can be used as a co-firing fuel in ammonia combustion to promote the reactivity and control the emission levels. However, knowledge of the ignition properties of NH3/CH4 mixtures at intermediate temperatures and elevated pressures is still scarce. This study reports ignition delay times of NH3/CH4/O2 mixtures diluted in Ar or Ar/N2 over a temperature range of 900–1100 K, pressures of 20 and 40 bar, and equivalence ratios of 0.5, 1.0, and 2.0. The results demonstrate that a higher CH4 mole fraction in the fuel mixture increases its reactivity, and that the reactivity decreases with increasing the fuel-oxygen equivalence ratio. The most recent mechanisms of Glarborg et al. (2018) and Li et al. (2019) were compared against the experimental data for validation purposes. Both mechanisms can predict the measurements fairly well, and key elementary reactions applied in both mechanisms were compared. A modified mechanism is provided, which can reproduce the measurements with smaller discrepancies in most cases. Detailed modeling for emissions indicated that adding CH4 to the fuel mixture increases the emission of NOx.  相似文献   

12.
Ignition delay time and species profile measurements are reported for the combustion of C2H2/O2/Ar mixtures with and without the addition of silane for temperatures between 1040 and 2320 K and pressures near 1 atm. Characteristic times, namely ignition time and time to peak, were determined from the time histories of CH* (A2Δ → X2Π) and OH* (A2Σ+ → X2Π) emission near 430 and 307 nm, respectively. For the cases without silane, there is good agreement between the present data and some recent acetylene oxidation results. Small SiH4 additions (<10% of the fuel) reduced the ignition time in stoichiometric mixtures by as much as 75% for shocks near 1800 K. Similar reductions were seen in the fuel-lean mixture, although the effect was less temperature dependent. Several detailed chemical kinetics mechanisms of hydrocarbon oxidation were compared to the ignition delay-time data and species profiles for C2H2/O2/Ar mixtures without silane. All models under-predicted ignition time for the 98% diluted stoichiometric mixture but matched the fuel-lean ignition data somewhat better. Two of the models displayed the shift in activation energy at lower temperatures seen in the data, although no one model was able to reproduce all ignition times over the entire range of mixtures and conditions.  相似文献   

13.
In this study, a direct numerical simulation based on compressible flow dynamics has been applied to the autoignition and extinction of a high-pressure hydrogen jet spouting from a tube. The diameter of the tube is 4.8 mm. The length of the tube is 71 mm. At the inlet, pressure is set at 3.6, 5.3 and 21.1 MPa, and temperature is set at 300 K for all cases. To explore the autoignition of hydrogen jet, two-dimensional axisymmetric Navier–Stokes equations with a detailed chemical kinetics and rigorous transport properties have been employed. The hydrogen jet through the tube is choked. The numerical results show that the high-pressure hydrogen jet produces a semi-spherical shock wave in the ambient air at the early time of jetting. The shock wave heats up the air to a high temperature and causes the autoignition of the hydrogen and air mixture in the tube as well as at the tube exit.  相似文献   

14.
Soot formation from the combustion of toluene (C6H5CH3) and of two concentrations of nano-sized-ceria-laden toluene was monitored using a shock tube to observe the effect of the organometallic additive on the formation of soot from its point of inception. Two concentrations of ceria, of chemical composition CeO1.63, were employed to examine the effect on soot production of toluene over the range of temperature 1588-2370 K using two levels of inert gas dilution in which reflected-shock pressure was maintained near 1.5 atm. The ceria nanoparticles were synthesized using a microemulsion technique which employs sodium dioctyl sulfosuccinate (AOT), a surfactant, to retard agglomeration. Introduction of the nanoparticles into the shock tube is achieved using a novel, two-stage injection procedure. Soot yield measurements reveal that the presence of ceria has no direct implications on peak soot concentration near 1950 K. A shift in the parabolic soot profile of toluene in the direction of increased temperature was observed for each concentration of ceria with a larger shift occurring for increased concentration of ceria, although the same effect was exhibited for the toluene-AOT mixtures in absence of ceria, supporting an inefficaciousness of ceria on soot suppression on kinetic timescales. It is evidenced in measured soot delay times that the presence of the surfactant in absence of ceria significantly slows the rate of soot growth for T < 2000 K, while the presence of ceria has a relatively negligible impact. Under conditions of higher fuel concentration, a remarkable decrease in soot accumulation on the shock tube walls was observed in experiments using the ceria-toluene mixtures over that yielded by pure toluene combustion. In the present paper, the authors report the first measurements of nanoparticle-influenced combustion of a hydrocarbon as performed in a shock tube.  相似文献   

15.
The oxidation of several mixtures of surrogate for gasoline was studied using a jet stirred reactor and a shock tube. One representative of each classes constituting gasoline was selected: iso-octane, toluene, 1-hexene and ethyl tert-butyl ether (ETBE). The experiments were carried out in the 800-1880 K temperature range, for two different initial pressures (0.2 and 1 MPa), with an initial fuel molar fraction of 0.001. The equivalence ratio varied from 0.5 to 1.5. Each hydrocarbon sub-mechanism was validated using shock tube data. The full mechanism describing the surrogate fuel oxidation is constituted of the sub-mechanisms for each fuel components and by adding interaction reactions between different hydrocarbon fragments. Good agreement between the experimental results and the computations was observed under JSR and shock tube conditions.  相似文献   

16.
Autoignition of surrogate fuels at elevated temperatures and pressures   总被引:2,自引:0,他引:2  
Autoignition of Jet-A and mixtures of benzene, hexane, and decane in air has been studied using a heated shock tube at mean post-shock pressures of 8.5 ± 1 atm within the temperature range of 1000–1700 K with the objective of identifying surrogate fuels for aviation kerosene. The influence of each component on ignition delay time and on critical conditions required for strong ignition of the mixture has been deduced from experimental observations. Correlation equation for Jet-A ignition times has been derived from the measurements. It is found that within the scatter of experimental data dilution of n-decane with benzene and n-hexane leads to slight increase in ignition times at low temperatures and does not change critical temperatures required for direct initiation of detonations in comparison with pure n-decane/air mixtures. Ignition times in 20% hexane/80% decane (HD), 20% benzene/80% decane (BD) and 18.2% benzene/9.1% hexane/72.7% decane (BHD) mixtures at temperature range of T  1450–1750 K correlate well with induction time of Jet-A fuel suggesting that these mixtures could serve as surrogates for aviation kerosene. At the same time, HD, BD and BHD surrogate fuels demonstrate a stronger autoignition and peak velocities of reflected shock front in comparison with Jet-A and n-decane/air mixtures.  相似文献   

17.
The auto-ignition properties of ammonia (NH3)/ethanol (C2H5OH) blends close to engine operating conditions were investigated for the first time. Specifically, the ignition delay times (IDT) of ammonia/ethanol blends were measured in a rapid compression machine (RCM) at elevated pressures of 20 and 40 bar, five C2H5OH mole fractions from 0% to 100%, three equivalence ratios (ϕ) of 0.5, 1.0 and 2.0, and intermediate temperatures between 820 and 1120 K. The measurements reveal that ethanol can drastically promote the reactivity of ammonia, e.g., the auto-ignition temperature with merely 1% C2H5OH in fuel decreases accordingly around 110 K at 40 bar as compared to that of neat ammonia. Moreover, the promotion efficiency of ethanol is higher than hydrogen and methane with a factor of 5 and 10 under the same condition. Different dependences of IDT on the equivalence ratio were observed with different ethanol fractions in the blends, i.e., the IDTs of the 5%, 10% and 100% C2H5OH in fuel decrease with an increase of ϕ, but an opposite trend was observed in the mixture with 1% C2H5OH. A new chemical kinetic mechanism for NH3/C2H5OH mixtures was developed and it is highlighted that the addition of cross-reactions between the two fuels is necessary to obtain reasonable simulations. Basically, the newly developed mechanism can reproduce the measurements of IDT very well, whereas it overestimates the reactivity of the stoichiometric and fuel-rich mixture with 1% C2H5OH in fuel. The sensitivity, reaction pathway, as well as rate of production analysis indicated that the ethanol addition to ammonia fuel blends provides key interaction pathways and enriches the O/H radical pool which further promotes the auto-ignition process.  相似文献   

18.
Ignition delay times of cyclohexane-oxygen-argon and cyclopentane-oxygen-argon mixtures have been measured in a shock tube, the onset of ignition being detected by OH radical emission. Mixtures contained 0.5 or 1% of hydrocarbon for values of the equivalence ratio ranging from 0.5 to 2. Reflected shock waves allowed temperatures from 1230 to 1840 K and pressures from 7.3 to 9.5 atm to be obtained. These measurements have shown that cyclopentane is much less reactive than cyclohexane, as for a given temperature the observed autoignition delay times were about 10 times higher for the C5 compound than for the C6. Detailed mechanisms for the combustion of cyclohexane and cyclopentane have been proposed to reproduce these results. The elementary steps included in the kinetic models of the oxidation of cyclanes are close to those proposed to describe the oxidation of non cyclic alkanes and alkenes. Consequently, it has been possible to obtain these models by using an improved version of the EXGAS software, a computer package for the automatic generation of detailed kinetic models for the gas-phase combustion of alkanes and alkenes. Nevertheless, the modeling of the oxidation of cyclanes requires new types of generic reactions to be considered, and especially to define new correlations for the estimation of the rate constants. Quantum chemical calculations have been used to improve the estimation of some sensitive rate constants in the case of cyclopentane. The main reaction pathways have been derived from flow rate and sensitivity analysis.  相似文献   

19.
Ignition delay times and OH concentration time-histories were measured in DME/O2/Ar mixtures behind reflected shock waves. Initial reflected shock conditions covered temperatures (T5) from 1175 to 1900 K, pressures (P5) from 1.6 to 6.6 bar, and equivalence ratios (?) from 0.5 to 3.0. Ignition delay times were measured by collecting OH emission near 307 nm, while OH time-histories were measured using laser absorption of the R1(5) line of the A-X(0,0) transition at 306.7 nm. The ignition delay times extended the available experimental database of DME to a greater range of equivalence ratios and pressures. Measured ignition delay times were compared to simulations based on DME oxidation mechanisms by Fischer et al. [7] and Zhao et al. [9]. Both mechanisms predict the magnitude of ignition delay times well. OH time-histories were also compared to simulations based on both mechanisms. Despite predicting ignition delay times well, neither mechanism agrees with the measured OH time-histories. OH Sensitivity analysis was applied and the reactions DME ↔ CH3O + CH3 and H + O2 ↔ OH + O were found to be most important. Previous measurements of DME ↔ CH3O + CH3 are not available above 1220 K, so the rate was directly measured in this work using the OH diagnostic. The rate expression k[1/s] =  1.61 × 1079T−18.4 exp(−58600/T), valid at pressures near 1.5 bar, was inferred based on previous pyrolysis measurements and the current study. This rate accurately describes a broad range of experimental work at temperatures from 680 to 1750 K, but is most accurate near the temperature range of the study, 1350-1750 K. When this rate is used in both the Fischer et al. and Zhao et al. mechanisms, agreement between measured OH and the model predictions is significantly improved at all temperatures.  相似文献   

20.
Shock tube ignition delay times were measured for DF-2 diesel/21% O2/argon mixtures at pressures from 2.3 to 8.0 atm, equivalence ratios from 0.3 to 1.35, and temperatures from 900 to 1300 K using a new experimental flow facility, an aerosol shock tube. The aerosol shock tube combines conventional shock tube methodology with aerosol loading of fuel-oxidizer mixtures. Significant efforts have been made to ensure that the aerosol mixtures were spatially uniform, that the incident shock wave was well-behaved, and that the post-shock conditions and mixture fractions were accurately determined. The nebulizer-generated, narrow, micron-sized aerosol size distribution permitted rapid evaporation of the fuel mixture and enabled separation of the diesel fuel evaporation and diffusion processes that occurred behind the incident shock wave from the chemical ignition processes that occurred behind the higher temperature and pressure reflected shock wave. This rapid evaporation technique enables the study of a wide range of low-vapor-pressure practical fuels and fuel surrogates without the complication of fuel cracking that can occur with heated experimental facilities. These diesel ignition delay measurements extend the temperature and pressure range of earlier flow reactor studies, provide evidence for NTC behavior in diesel fuel ignition delay times at lower temperatures, and provide an accurate data base for the development and comparison of kinetic mechanisms for diesel fuel and surrogate mixtures. Representative comparisons with several single-component diesel surrogate models are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号