首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the first synthesis of cadmium sulfide (CdS)-poly(lactic acid) (PLA) nanocomposites and their transparent fluorescent films by covalently grafting PLA onto the surfaces of CdS nanocrystals (NCs). Synthesis of the nanocomposites involved two steps. Lactic acid (LA)-capped CdS NCs were first prepared by reacting cadmium chloride (CdCl2) with sodium sulfide (Na2S) using LA as the organic ligand in H2O/N,N-dimethylformamide (DMF) solution. CdS–PLA nanocomposites were then formed by in situ ring-opening polymerization of lactide on the surface of modified CdS NCs. We also demonstrated herein the fabrication of the transparent fluorescent films of CdS–PLA nanocomposites by blending as-prepared nanocomposites with high-molecular-weight PLA. The as-prepared CdS NCs and their nanocomposites were studied by transmission electron microscopic imaging, thermogravimetric analyses, and spectroscopic measurements (ultraviolet–visible absorption and photoluminescence). The results revealed that the CdS–polymer nanocomposites exhibited good optical properties in terms of their photoluminescence and transparency.  相似文献   

2.
We report an available approach for quickly fabricating CdS QD‐polymer nanocomposites via frontal polymerization (FP). First, we synthesized (3‐mercaptopropyl)‐1‐trimethoxysilane (MPS)‐capped CdS quantum dots (QDs). With these MPS‐capped CdS QDs containing mercapto groups, MPS‐capped CdS QDs can be easily incorporated into a poly(N‐methylolacrylamide) (PNMA) matrix via FP. A variety of features for preparing QD‐polymer nanocomposites, such as initiator concentration and CdS concentration, were thoroughly investigated. The fluorescence properties of QD‐polymer nanocomposites prepared via FP are comparatively investigated on the basis of ultraviolet–visible (UV–vis) spectra and photoluminescence (PL) spectra. Results show that the PL intensity of QD‐polymer nanocomposites prepared via the FP method is superior to that obtained by the traditional batch polymerization (BP) method. In addition, by measuring the changes of PL intensity of the samples immersed in different concentrations of copper acetate solution, we found the QD‐polymer nanocomposites can be ultrasensitive to copper ions. This FP process can be exploited as a facile and rapid way for synthesis QD‐polymer nanocomposites on a large scale, avoiding the fluorescence quenching of nanocrystals during incorporation nanocrystals into polymer matrices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2170–2177, 2010  相似文献   

3.
5-Amino-1,10-phenanthroline (Aphen) was used as an organic ligand to functionalize CdS nanocrystals (NCs) by a ligand-exchange process. The functional Aphen-CdS NCs have strong luminescent emission at 552 nm and good dispersibility in the polar organic monomers. The Aphen-CdS NCs were dispersed in polymeric monomers to prepare a series of transparent luminescent nanocomposites with excellent thermal stability via in-situ bulk polymerization. The fluorescent properties of the Aphen-CdS NCs were well retained in the polymer matrix. It was found that when the methacrylic acid (MAA) and glycidyl methacrylate (GMA) as the comonomers were introduced into the polymer matrix, the emission peaks of the resultant nanocomposites had a blue shift and the fluorescent intensities also increased due to the interaction between NCs and the polymer matrices. The transparent NCs/polymer nanocomposites with tunable fluorescent emission can be potentially used for the fabrication of optoelectronic devices.  相似文献   

4.
Herein, we report the synthesis of quantum dots (QDs)/polymer nanocomposites by reversible addition‐fragmentation chain transfer (RAFT) polymerization in miniemulsions using a grafting from approach. First, the surfaces of CdS and CdSe QDs were functionalized using a chain transfer agent, a trisalkylphosphine oxide incorporating 4‐cyano‐4‐(thiobenzoylsulfanyl)pentanoic acid moieties. Using a free radical initiator (AIBN) to activate the RAFT process, a polystyrene (PS) block was grafted from the surface of the QDs. Quantum confinement effects were identified for the nanocomposite obtained, so attesting to the integrity of the QDs after the polymerization. Free PS chains were also present in the final nanocomposite, indicating that the RAFT polymerization from the surface of the QDs was accompanied by conventional free radical polymerization. After isolating the nanocomposite particles, a second poly(n‐butyl acrylate) block was tentatively grown from the initial PS block. The first results indicated a successful polymerization of the second polymer and show the potential of the current strategy to prepare block copolymers from the surface of the RAFT‐modified QDs. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5367–5377, 2009  相似文献   

5.
A series of cobalt(II) phenoxy-imine complexes (CoII(FI)2) have been synthesized to mediate the radical polymerization of vinyl acetate (VAc) and methyl acrylate (MA) to evaluate the influence of chelating atoms and configuration to the control of polymerization. The VAc polymerizations showed the properties of controlled/living radical polymerization (C/LRP) with complexes 1a and 3a , but the catalytic chain transfer (CCT) behaviors with complexes 2a , 1b , 2b , and 3b . The control of VAc polymerization mediated by complex 1a could be improved by decreasing the reaction temperature to approach the molecular weights that not only linearly increased with conversions but also matched the theoretical values and relatively narrow molecular weight distributions. The catalytic chain transfer polymerizations (CCTP) mediated by complexes 2a , 1b , 2b , and 3b were characterized by Mayo plots and the polymer chain end double bonds were observed by 1H NMR spectra. The tendency toward C/LRP or CCTP in VAc polymerization mediated by CoII(FI)2 could be determined by the ligand structure. Cobalt complex coordinated by the ligand with more steric hindered and less electron-donating substituents favored the controlled/living radical polymerization. In contrast, the efficiency of CCT process could be enhanced by less steric hindered, more electron-donating ligands. The controlled/living radical polymerization of MA, however, could not be achieved by the mediation of these cobalt(II) phenoxy-imine complexes. Associated with the results of polymerization mediated by other cobalt complexes, this study implied that the configuration and spin state of cobalt complexes were more critical than the chelating atoms to the control behavior of radical polymerization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 101–113  相似文献   

6.
Highly photoluminescent hybrid Zn(II)-doped CdS nanocluster/copolymer nanocomposites latex were prepared by using the chelating copolymer, poly(methyl methacrylate-co-methyl acrylate-co-2-methyl acrylic acid 3-(bis-carboxymethyl amino)-2-hydroxyl-propyl ester), with in-situ chemical precipitation method. The morphology and photoluminescence property of the hybrid Zn(II)-doped CdS nanocluster/copolymer nanocomposites latex was examined by TEM and photoluminescence analyzer (PL), respectively. The photoluminescent intensity of the hybrid CdS nanocluster/copolymer nanocomposites could be enhanced by Zn(II) doped treatment from the PL measurement. Furthermore, these hybrid nanocomposite latex could be easily manufactured into the transparent nanocomposite membrane without losing their photoluminescence property as they were cured at 60 °C. Interestingly, the photoluminescence property of the hybrid Zn(II)-doped CdS nanocluster/copolymer nanocomposite membranes would be influenced by amino compounds due to the surface passivation effect. When the secondary amine compounds were used as the surface passivation materials, the photoluminescent intensity of the hybrid nanocomposite membrane would be enhanced. On the contrary, the hybrid nanocomposite membranes would descend their photoluminescent intensity as the primary amine compounds were used as surface passivation materials.  相似文献   

7.
High cis‐1,4 polyisoprene with narrow molecular weight distribution has been prepared via coordinative chain transfer polymerization (CCTP) using a homogeneous rare earth catalyst composed of neodymium versatate (Nd(vers)3), dimethyldichlorosilane (Me2SiCl2), and diisobutylaluminum hydride (Al(i‐Bu)2H) which has strong chain transfer affinity is used as both cocatalyst and chain transfer agent (CTA). Differentiating from the typical chain shuttling polymerization where dual‐catalysts/CSA system has been used, one catalyst/CTA system is used in this work, and the growing chain swapping between the identical active sites leads to the formation of high cis‐1,4 polyisoprene with narrowly distributed molecular weight. Sequential polymerization proves that irreversible chain termination reactions are negligible. Much smaller molecular weight of polymer obtained than that of stoichiometrically calculated illuminates that, differentiating from the typical living polymerization, several polymer chains can be produced by one neodymium atom. The effectiveness of Al(i‐Bu)2H as a CTA is further testified by much broad molecular weight distribution of polymer when triisobutylaluminum (Al(i‐Bu)3), a much weaker chain transfer agent, is used as cocatalyst instead of Al(i‐Bu)2H. Finally, CCTP polymerization mechanism is validated by continuously decreased Mw/Mn value of polymer when increasing concentration of Al(i‐Bu)2H extra added in the Nd(ver)3/Me2SiCl2/Al(i‐Bu)3 catalyst system. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
Catalytic chain transfer polymerization (CCTP) has emerged as an efficacious method to produce low-molecular weight polymers. In this paper, we reported the first controllable synthesis of nanosilica surface-grafted poly(methyl methacrylate) (PMMA) (SI-PMMA) macromonomers by using bis(aqua)bis((difluoroboryl)-dimethylglyoximato)cobalt(II) (CoBF) as a chain transfer catalyst via CCTP. In a typical run, we firstly prepared functionalized nanosilica by using 3-(trimethoxysilyl)propylmethacrylate (MPS) as the coupling agent, allowing naosilica containing unsaturated double bonds in end groups. Subsequently, SI-PMMA macromonomers were prepared by PMMA surface-grafted onto the functionalized nanosilica via CCTP. The as-prepared products were characterized by Fourier transforms infrared (FT-IR) spectrum, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transforms Raman (FT-Raman) spectrum and gel permeation chromatography (GPC). We also investigated the dependence of macromonomers on CoBF concentrations.  相似文献   

9.
A method to prepare zinc oxide (ZnO) nanoparticles with a covalently bonded poly(methyl methacrylate) (PMMA) shell by surface initiated atom transfer radical polymerization (ATRP) was reported. First, the initiator for ATRP was covalently bonded onto the surface of zinc oxide nanoparticles through our novel method. Firstly, the surface of ZnO nanoparticle was treated with 3-aminopropyl triethoxysilane, a silane coupling agent, and then this functionalization nanoparticle was reacted with α-chloro phenyl acetyl chloride to prepare atom transfer radical polymerization macroinitiator. The metal-catalyzed radical polymerization of MMA with ZnOmacroinitiator was performed using a copper catalyst system to give the ZnO-based nanoparticles hybrids linking PMMA segments (poly (methyl methacrylate)/zinc oxide nanocomposite). These hybrid nanoparticles had an exceptionally good dispersability in organic solvents and were subjected to detailed characterization using FTIR, TEM and TGA and DSC analyzed.  相似文献   

10.
Reversible addition-fragmentation chain transfer (RAFT) polymerization of 2,3-dimethyl-1,3-butadiene (DMB) in solution and on the surface of silica nanoparticles was investigated and PDMB-grafted silica nanoparticles (PDMB-g-SiO2 NPs) with different chain densities and molecular weights were prepared. The kinetic studies of DMB polymerization mediated by silica anchored RAFT agents at different graft densities were investigated and compared to the polymerization mediated by the corresponding free RAFT agent. The PDMB-g-SiO2 NPs were cured to prepare rubbery films and obtain matrix-free nanocomposites, which exhibited a good dispersion of silica nanoparticles and improved mechanical properties compared to the unfilled crosslinked rubber. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 417–427  相似文献   

11.
以钴Ⅱ肟氟化硼络合物(CoBF)为催化剂,2,2′-偶氮二异丁腈(AIBN)为引发剂,实现了甲基丙烯酸甲酯(MMA)与γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)在60℃甲苯体系中的催化链转移聚合(catalytic chaintransfer polymerization,CCTP),制备出末端含有双键的共聚物.利用核磁共振证明了其末端双键的存在,并通过热重分析证明CCTP产物与自由基聚合产物的结构区别.用凝胶渗透色谱(GPC)对7种单体组成下不同催化剂CoBF用量的聚合产物进行分子量表征,结果表明以催化链转移聚合合成的共聚物具有分子量低及分子量分布较窄,且聚合物的分子量随着催化剂CoBF的增加呈明显下降趋势.又分别采用了基于DPn(数均聚合度)、DPw(重均聚合度)的Mayo方程和基于ΛP、ΛH的链长分布方程计算出催化剂的表观链转移常数,发现基于DPw的Mayo方程和基于ΛP的链长分布方程的计算结果最为接近.并通过对共聚体系中不同单体组成的研究发现,催化剂表观链转移常数随着单体组成中MPS的增加而增加.  相似文献   

12.
We describe a facile fabrication of white light‐emitting cadmium sulfide (CdS)‐poly(HEA‐co‐NVK) nanocomposites [2‐hydroxyethyl acrylate (HEA) and N‐vinylcarbazole (NVK)] via plasma‐ignited frontal polymerization (PIFP), a novel and rapid reaction mode of converting monomers into polymers in minutes. Frontal polymerization was initiated by igniting the upper side of the reactant with plasma. Once initiated, no additional energy was required for the polymerization to occur. The chemical functional groups of the as‐prepared nanocomposites were thoroughly investigated using Fourier transform infrared spectra. The dependence of the front velocity and front temperature on the initiator concentration and weight ratios of HEA/NVK was also investigated in detail. Perhaps more interestingly, the white light‐emitting materials synthesized by ingeniously incorporating the compensating colors of yellow emitting from 3‐(trimethoxysilyl)‐1‐propanethiol‐capped CdS nanocrystals and blue emitting from carbazole‐containing polymer were conveniently applied onto a commercial UV light‐emitting diode (LED) to generate white LEDs. The subtle change in the weight ratios of CdS/NVK can significantly impact the color hue. The white light becomes gradually colder with the increase of NVK, but becomes gradually warmer with the increase concentration of CdS nanocrystals. In a broad perspective, these white light‐emitting materials designed by PIFP approach will open a new pathway to develop “QD‐polymer nanocomposite down‐conversion LED” in a fast and efficient way. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Nano cellulose particles covered with a block copolymer of microcrystalline cellulose and poly(methyl methacrylate) (MCC-block-PMMA) were produced by a solid mechano-chemical polymerization. The polymerization of methyl methacrylate was initiated by chain-end-type microcrystalline cellulose (MCC) radicals (i.e., MCC mechano radicals) on the surface of MCC that were induced by mechanical fracture of β-1,4 glycosidic linkages. The chemically modified cellulose particles with MCC-block-PMMA were fractionated by Soxhlet extraction with chloroform, and resulted in MCC-block-PMMA residue from residue on the filter and MCC-block-PMMA filtrate from filtrate solution. The surface of the MCC particles chemically modified with MCC-block-PMMA in MCC-block-PMMA residue was partially covered with PMMA chains of the MCC-block-PMMA. In contrast, the surfaces of the MCC nanoparticles chemically modified with MCC-block-PMMA in MCC-block-PMMA filtrate were fully covered with PMMA chains of the MCC-block-PMMA. A dispersion of the chemically fully modified MCC nanoparticles in chloroform was optically transparent. The average diameter of the chemically fully modified MCC nanoparticles in chloroform was estimated to be 52 nm. These were confirmed by electron spin resonance, Fourier transform infrared, and 1H nuclear magnetic resonance spectroscopy, by gel permeation chromatography and dynamic light scattering.  相似文献   

14.
Organic/inorganic nanocomposites were synthesized from poly(methylmethacrylate) (PMMA) and properly modified silica nanoparticles by in situ polymerization. Methacryloylpropyltrimethoxysilane was selected as nanoparticle surface modifier because it is characterized by unsaturated end groups available to radical reactions, making possible to suppose their participation in the acrylic monomer polymerization. As a result of the above hypothesized reactions, a phase constituted by polyacrylic chains grafted onto modified silica surface was isolated. 29Si and 13C solid‐state nuclear magnetic resonance experiments permitted to analyze this phase in terms of composition and chain mobility as well as to highlight interaction mechanisms occurring between growing PMMA oligoradicals and functional groups onto silica surface. It was demonstrated that this PMMA grafted onto silica surface acts as an effective coupling agent and assures a good dispersion of nanoparticles as well as a strong nanoparticle/matrix interfacial adhesion. As a result of strong interactions occurring between phases, a significant increase of the glass transition temperature was recorded. Finally, the abrasion resistance of PMMA in the hybrids was significantly improved as a result of a different abrasion propagation mechanism induced by silica particles thus overcoming one of the most serious PMMA drawback. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
This paper describes the synthesis and characterization of CdS nanoparticles (NPs) stabilized with poly(N-vinyl-2-pyrrolidone) and their further immobilization on a hybrid organic–inorganic matrix produced by the sol–gel process. The production of the hybrid matrix doped with CdS NPs was carried out in two steps. In the first step a precursor, designated diureasil precursor, was synthesized from the reaction between the terminal amine groups of α,ω-diamine-poly(oxyethylene-co-oxypropylene) and the isocyanate group of 3-isocyanatopropyltriethoxysilane. The next step involved the hydrolysis and condensation reactions of ethoxy groups attached to silicon, this step resulting in the formation of a crosslinked siliceous network linked through urea bonds to a poly(oxyethylene)/poly(oxypropylene) chain. The NPs were added to the diureasil precursor before the gelation process to allow a homogeneous dispersion of the NPs within the matrix. The developed method allowed the transfer of colloidal NPs to a solid matrix without the need of exchange the capping agents or the solvent. The materials were characterized by absorption, steady-state photoluminescence spectroscopy and by TEM. The results obtained showed the presence of CdS NPs with quantum size effect dispersed within the diureasil matrix. The obtained nanocomposites show a high transparency in the visible range accounting for the good dispersion of the NPs within the matrix. The TEM analysis confirmed that the NPs are uniformly dispersed within the diureasil matrix.  相似文献   

16.
Latexes of poly(n‐butyl acrylate‐co‐methyl methacrylate) [P(BA‐co‐MMA)] filled with magnesium–aluminum layered double hydroxides (MgAl‐LDHs) are synthesized using miniemulsion polymerization. Three commercial LDHs organically modified with different types of anions are used as fillers (Perkalite F100S, Perkalite A100, and Perkalite AF50) and three different types of surfactants are tested to stabilize the miniemulsions including a cationic, an anionic, and a nonionic one. Stable LDH‐containing miniemulsions are prepared with a mixture of sodium dodecyl sulfate and Triton X‐405 and the polymerizable co‐stabilizer octadecyl acrylate. They are then polymerized to yield nanocomposite latexes. Depending on the type of LDH used, the presence of the inorganic material in the reaction medium affects the polymerization kinetics. X‐ray diffraction analysis of the resulting nanocomposite films suggests exfoliation of the inorganic material. The glass transition temperature of the nanocomposites is not affected by the LDHs and the decomposition temperature of the nanocomposites determined by thermogravimetric analysis is greater than that of the pure polymer.  相似文献   

17.
A series of 2,6‐bis(imino)pyridines, as common ligands for late transition metal catalyst in ethylene coordination polymerization, were successfully employed in single‐electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) by using poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) as macroinitiator with low concentration of copper catalyst under relative mild‐reaction conditions. Well‐controlled polymerization features were observed under varied reaction conditions including reaction temperature, catalyst concentration, as well as monomer amount in feed. The typical side reactions including the chain‐transfer reaction and dehydrochlorination reaction happened on P(VDF‐co‐CTFE) in atom‐transfer radical polymerization process were avoided in current system. The relationship between the catalytic activity and the chemical structure of 2,6‐bis(imino)pyridine ligands was investigated by comparing both the electrochemical properties of Cu(II)/2,6‐bis(imino)pyridine and the kinetic results of SET‐LRP of MMA catalyzed with different ligands. The substitute groups onto N‐binding sites with proper steric bulk and electron donating are desirable for both high‐propagation reaction rate and C? Cl bonds activation capability on P(VDF‐co‐CTFE). The catalytic activity of Cu(0)/2,6‐bis(imino)pyridines is comparable with Cu(0)/2,2′‐bipyridine under the consistent reaction conditions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4378–4388  相似文献   

18.
The direct growth of CdS nanocrystals in functional solid‐state thermotropic liquid crystal (LC) small molecules and a conjugated LC polymer by in situ thermal decomposition of a single‐source cadmium xanthate precursor to fabricate LC/CdS hybrid nanocomposites is described. The influence of thermal annealing temperature of the LC/CdS precursors upon the nanomorphology, photophysics, and optoelectronic properties of the LC/CdS nanocomposites is systematically studied. Steady‐state PL and ultrafast emission dynamics studies show that the charge‐transfer rates are strongly dependent on the thermal annealing temperature. Notably, annealing at liquid‐crystal state temperature promotes a more organized nanomorphology of the LC/CdS nanocomposites with improved photophysics and optoelectronic properties. The results confirm that thermotropic LCs can be ideal candidates as organization templates for the control of organic/inorganic hybrid nanocomposites at the nanoscale level. The results also demonstrate that in situ growth of semiconducting nanocrystals in thermotropic LCs is a versatile route to hybrid organic/inorganic nanocomposites and optoelectronic devices.  相似文献   

19.
Hybrid latexes based on cerium oxide nanoparticles are synthesized via an emulsifier‐free process of emulsion polymerization employing amphiphatic macro‐RAFT agents. Poly(butyl acrylate‐co‐acrylic acid) random oligomers of various compositions and chain lengths are first obtained by RAFT copolymerization in the presence of a trithiocarbonate as controlling agent. In a second step, the seeded emulsion copolymerization of styrene and methyl acrylate is carried out in the presence of nanoceria with macro‐RAFT agents adsorbed at their surface, resulting in a high incorporation efficiency of cerium oxide nanoparticles in the final hybrid latexes, as evidenced by cryo‐transmission electron microscopy.  相似文献   

20.
The effect the catalytic chain transfer agent, bis[(difluoroboryl) dimethylglyoximato] cobalt(II) (COBF), on the course of the ab initio emulsion polymerization of methyl methacrylate, and the product properties in terms of the molecular weight distribution were investigated. The emulsion polymerization kinetics have been studied with varying surfactant, initiator, and COBF concentrations. The experimentally determined average number of radicals per particle strongly depends on the concentration of COBF and proves to be in good agreement with the results of model calculations. The apparent chain transfer constant, determined up to high conversion, is in excellent agreement with the predicted value based on a mathematical model based on COBF partitioning and the Mayo equation. The results of this work enhance the fundamental understanding of the influence a catalytic chain transfer agent has on the course of the emulsion polymerization and the control of the molecular weight distribution. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5078–5089, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号