首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrospray ionisation (ESI) mass spectrometric method for the determination of the free energy (DeltaG) of unfolding of proteins is described. The method was tested using three blue copper proteins: wild type azurin, Cys-3Ala/Cys-26Ala (C3A/C26A) azurin mutant and wild-type amicyanin. The time course of the denaturation process of the proteins dissolved in methanol/water (50:50, v/v, pH 3.5) was followed by recording ESI mass spectra at time intervals. The spectra showed two series of peaks, corresponding to the native holo-protein and the unfolded apo-protein. From the intensity ratio of these two series of peaks at increasing time and at equilibrium, the free energy for the unfolding process for the three proteins could be determined. To evaluate the reliability of the thermodynamic data obtained by the ESI mass spectrometric approach, the denaturation process was followed by UV-VIS spectroscopy. The two sets of data obtained by these independent methods were in good agreement indicating that the ESI-MS approach can be used to obtain reliable quantitative information about the protein unfolding process. In principle, this approach can be applied to other proteins and requires very low amounts of sample, due to the intrinsic sensitivity of mass spectrometry. This may prove particularly useful when the amount of sample available prevents the use of current methods.  相似文献   

2.
This investigation represents a first attempt to gain a quantitative estimate of the effects of the anions sulfate, citrate, acetate, chloride and thiocyanate on the thermodynamic stability (DeltaG degrees) of a model globular protein in ice at -15 degrees C. The method, based on guanidinium chloride denaturation of the azurin mutant C112S from Pseudomonas aeruginosa, distinguishes between the effects of cooling to subfreezing temperatures from those induced specifically by the formation of a solid ice phase. The results confirm that, both in liquid and frozen states, kosmotropes (sulfate, citrate and acetate) increase significantly protein stability, relative to chloride, whereas the chaotrope thiocyanate decreases it. Throughout, their stabilizing efficacy was found to rank according to the Hofmeister series, sulfate>citrate>acetate>chloride>thiocyanate, although the magnitude of Delta(DeltaG degrees) exhibited a distinct sensitivity among the anions to low temperature and to ice formation. In the liquid state, lowering the temperature from +20 to -15 degreesC weakens considerably the stabilizing efficacy of the organic anions citrate and acetate. Among the anions sulfate stands out as the only strong stabilizer at subfreezing temperatures while SCN- becomes an even stronger denaturant. Freezing of the solution in the presence the "neutral" salt NaCl destabilizes the protein, DeltaG degrees progressively decreasing up to 3-4 kcal/mol as the fraction of liquid water in equilibrium with ice (VL) is reduced to less than 1%. Kosmotropes do attenuate the decrease in protein stability in ice although in the case of citrate and acetate, their efficacy diminishes sharply as the liquid fraction shrinks to below 2.7%. On the contrary, sulfate is remarkable for it maintains constantly high the stability of azurin in liquid and frozen solutions, down to the smallest VL (0.5%) examined. Throughout, the reduction in DeltaG degrees caused by the solidification of water correlates with the decrease in the denaturant m value, an indirect indication that protein-ice interactions generally lead to partial unfolding of the native state. It is proposed that binding of the kosmotropes to the ice interface may inhibit protein adsorption to the solid phase and thereby counter the ice perturbation.  相似文献   

3.
This study represents the first attempt to gain a quantitative estimate of the protective influence of sugars (sucrose and trehalose) and polyols (sorbitol and glycerol) on the thermodynamic stability (DeltaG degrees ) of a protein in low-temperature part-frozen aqueous solutions. The method, based on guanidinium chloride denaturation of the azurin mutant C112S from Pseudomonas aeruginosa, distinguishes between the effects of cooling to subfreezing temperatures from those induced specifically by the formation of a solid ice phase. The results point out that in the liquid state the generally stabilizing effect (at molar concentrations) of these polyhydric compounds is markedly attenuated on cooling to subfreezing temperatures such that at -15 degrees C, only sucrose still exerts a significant increase in DeltaG degrees . At this temperature, and in the absence of additives, the formation of ice caused a progressive destabilization of the native fold, DeltaG degrees decreasing up to 3-4 kcal/mol as the fraction of liquid water in equilibrium with ice (V(L) was reduced to less than 1%. Unexpectedly, denaturation profiles in ice at selected V(L) demonstrate that none of the above sugars and polyols counters effectively the decrease in protein stability at small V(L). Only trehalose was able to partly attenuate the ice perturbation, raising DeltaG degrees by a modest 0.6-0.8 kcal/mol relative to the salt reference. In all cases the reduction in DeltaG degrees caused by the solidification of water correlates with the decrease in m-value. The implication is that DeltaASA of unfolding is smaller in ice because protein-ice interactions either increase the solvent-accessible surface area (ASA) of the native fold (partial unfolding) or reduce the ASA of the denatured state (compaction), or both. Information on the protein tertiary structure in ice, in the absence and in the presence of sucrose or glycerol, suggests that these osmolytes play an important role in maintaining a compact native state that in their absence is expanded and partly unfolded. Thus, it appears that the prevailing mechanism by which these osmolytes act as cryoprotectants is through preservation of the native conformation in the liquidus rather than by increasing the thermodynamic stability of the native fold.  相似文献   

4.
A Mg/Fe hydrotalcite-like-compound (HTlc) was prepared and its affinity toward the removal of SeO(3)(2-) from an aqueous medium was studied as a function of pH, time, temperature, particle dose, and SeO(3)(2-) concentration. The fraction of SeO(3)(2-) removal increases with decrease in both pH and temperature. The adsorption data are fitted to the Langmuir adsorption isotherm in the temperature range 303-333 K, and the thermodynamic parameters viz. standard Gibbs' free energy change (DeltaG degrees ), enthalpy change (DeltaH degrees ), and entropy change (DeltaS degrees ) are calculated. The negative value of DeltaH degrees indicates that the adsorption process is exothermic. The apparent equilibrium constants (K(a)) are also calculated and found to decrease with increase in temperature.  相似文献   

5.
Coldspray ionization (CSI) mass spectrometry, a variant of electrospray ionization (ESI) operating at low temperature (20 to −80°C), has been used to characterize protein conformation and noncovalent complexes. A comparison of CSI and ESI was presented for the investigation of the equilibrium acid-induced unfolding of cytochrome c, ubiquitin, myoglobin, and cyclophilin A (CypA) over a wide range of pH values in aqueous solutions. CSI and nanoelectrospray ionization (nanoESI) were also compared in their performance to characterize the conformational changes of cytochrome c and myoglobin. Significant differences were observed, with narrower charged-state distribution and a shift to lower charge state in the CSI mass spectra compared with those in ESI and nanoESI mass spectra. The results suggest that CSI is more prone to preserving folded protein conformations in solution than the ESI and nanoESI methods. Moreover, the CSI-MS data are comparable with those obtained by other established biophysical methods, which are generally acknowledged to be the suitable techniques for monitoring protein conformation in solution. Noncovalent complexes of holomyoglobin and the protein-ligand complex between CypA and cyclosporin A (CsA) were also investigated at a neutral pH using the CSI-MS method. The results of this study suggest the ability of CSI-MS in retaining of protein conformation and noncovalent interactions in solution and probing subtle protein conformational changes. Additionally, the CSI-MS method is capable of analyzing quantitatively equilibrium unfolding transitions of proteins. CSI-MS may become one of the promising techniques for investigating protein conformation and noncovalent protein-ligand interactions in solution.  相似文献   

6.
Electrospray-ionization (ESI) mass spectrometry is used to monitor higher order structural changes of polypeptides induced by alteration of the pH or organic solvent composition in the protein solution environment. A bimodal charge-state distribution is observed in the ESI mass spectrum of ubiquitin (relative molecular mass 8565) in solutions containing small amounts (less than 20%) of organic solvents. The distribution of peaks at high m/z (low-charge state) is found to represent the protein in its native, globular state; the higher-charge-state distribution is characteristic for a more extended conformation. Addition of methanol denaturant in excess of 40% v/v is needed to eliminate the low-charge-state distribution completely. Lesser amounts of acetonitrile, acetone, or isopropanol (approximately 20%) are required to denature the ubiquitin protein. Other proteins showing conformational effects in their ESI mass spectra are also illustrated. While the ESI spectra are related to solution phase structure, ESI-tandem mass spectrometry of multiply charged molecular ions of different conformation is suggested as a probe of gas-phase protein three-dimensional structure.  相似文献   

7.
Nano-electrospray-ionization mass spectrometry (nano-ESI-MS) is employed here to describe equilibrium protein conformational transitions and to analyze the influence of instrumental settings, pH, and solvent surface tension on the charge-state distributions (CSD). A first set of experiments shows that high flow rates of N2 as curtain gas can induce unfolding of cytochrome c (cyt c) and myoglobin (Mb), under conditions in which the stability of the native protein structure has already been reduced by acidification. However, it is possible to identify conditions under which the instrumental settings are not limiting factors for the conformational stability of the protein inside ESI droplets. Under such conditions, equilibrium unfolding transitions described by ESI-MS are comparable with those obtained by other established biophysical methods. Experiments with the very stable proteins ubiquitin (Ubq) and lysozyme (Lyz) enable testing of the influence of extreme pH changes on the ESI process, uncoupled from acid-induced unfolding. When HCl is used for acidification, Ubq and Lyz mass spectra do not change between pH~7 and pH 2.2, indicating that the CSD is highly characteristic of a given protein conformation and not directly affected by even large pH changes. Use of formic or acetic acid for acidification of Ubq solutions results in major spectral changes that can be interpreted in terms of protein unfolding as a result of the increased hydrophobicity of the solvent. On the other hand, Lyz, cyt c, and Mb enable direct comparison of protein CSD (corresponding to either the folded or the unfolded protein) in HCl or acetic acid solutions at low pH. The values of surface tension for these solutions differ significantly. Confirming indications already present in the literature, we observe very similar CSD under these solvent conditions for several proteins in either compact or disordered conformations. The same is true for comparison between water and water–acetic acid for folded cyt c and Lyz. Thus, protein CSD from water–acetic solutions do not seem to be limited by the low surface tension of acetic acid as previously suggested. This result could reflect a general lack of dependence of protein CSD on the surface tension of the solvent. However, it is also possible that the effect of acetic acid on the precursor ESI droplets is smaller than generally assumed.  相似文献   

8.
Trapp O 《Electrophoresis》2005,26(2):487-493
Dynamic capillary electrophoresis (DCE) and direct calculation of the rate constants of isomerization has been applied to determine the cis-trans isomerization barriers of the angiotensin-converting enzyme inhibitor captopril. The separation of the rotational cis-trans isomeric drug has been performed in an aqueous 50 mM borate buffer at pH 9.3. Interconversion profiles featuring plateau formation, peak-broadening, and peak coalescence were observed. To determine the rate constants of the forward and backward reaction (k(cis-->trans) and k(trans-->cis)) of the isomerization process in dynamic capillary electrophoresis, a novel straightforward calculation method using the experimental parameters plateau height, h(plateau), peak width at half height w(h), the total migration times of the cis-trans isomers t(R) and the electroosmotic break-through time t(0) as well as the peak ratio of the cis-trans isomers is presented for the first time. From temperature dependent measurements the rate constants k(cis-->trans) and k(trans-->cis) and the kinetic activation parameters DeltaG( not equal), DeltaH( not equal), and DeltaS( not equal) of the cis-trans isomerization of captopril were obtained. From the activation parameters the isomerization barriers of captopril at 37 degrees C under basic conditions were calculated to be DeltaG( not equal) (cis-->trans) = 90.3 kJ.mol(-1)and DeltaG( not equal) (trans-->cis) = 90.0 kJ.mol(-1*).  相似文献   

9.
At high pH and in the presence of dissolved CO2, the N-terminus and ε-amino groups of amino acids, peptides, and proteins can form carbamino adducts with CO2, R-NH2 + CO2 ↔ R-NHCOO + H+. We report the first study of carbamino group formation by electrospray ionization (ESI) mass spectrometry (MS). Angiotensin II, bradykinin, substance P, and insulin have been studied. A careful optimization of the instrumental parameters was necessary to allow the transfer of the fragile adducts into vacuum for mass analysis. Particularly, dissociation of the adducts in the ion sampling process and pH changes in ESI must be minimized. With these precautions, levels of carbamino group formation of angiotensin II and bradykinin determined from mass spectra agree with those expected to be in solution, calculated from literature equilibrium constants. Thus, ESI MS can quantitatively measure ratios of carbamino adduct to total peptide concentration in solution. Values of equilibrium constants for carbamino group formation with substance P (pKc = 4.77 ± 0.18) and insulin (pKc = 4.99 ± 0.05) are reported for the first time.  相似文献   

10.
Changes in protein conformation are thought to alter charge state distributions observed in electrospray ionization mass spectra (ESI-MS) of proteins. In most cases, this has been demonstrated by unfolding proteins through acidification of the solution. This methodology changes the properties of the solvent so that changes in the ESI-MS charge envelopes from conformational changes are difficult to separate from the effects of changing solvent on the ionization process. A novel strategy is presented enabling comparison of ESI mass spectra of a folded and partially unfolded protein of the same amino acid sequence subjected to the same experimental protocols and conditions. The N-terminal domain of the Escherichia coli DnaB protein was cyclized by in vivo formation of an amide bond between its N- and C-termini. The properties of this stabilized protein were compared with its linear counterpart. When the linear form was unfolded by decreasing pH, a charge envelope at lower m/z appeared consistent with the presence of a population of unfolded protein. This was observed in both positive-ion and negative-ion ESI mass spectra. Under the same conditions, this low m/z envelope was not present in the ESI mass spectrum of the stable cyclized form. The effects of changing the desolvation temperature in the ionization source of the Q-TOF mass spectrometer were also investigated. Increasing the desolvation temperature had little effect on positive-ion ESI mass spectra, but in negative-ion spectra, a charge envelope at lower m/z appeared, consistent with an increase in the abundance of unfolded protein molecules.  相似文献   

11.
Agrawal YK  Tandon SG 《Talanta》1972,19(5):700-706
Thermodynamic association constants of benzohydroxamic acid and several ortho-substituted N-phenylbenzohydroxamic acids have been determined by pH titration in aqueous dioxan media at 25 degrees and 35 degrees . Empirical pH corrections for mixed aqueous media have been applied. The pK(a) values do not vary linearly with the reciprocal of dielectric constant of the medium, but a plot of pK(a) vs. the mole fraction of dioxan is linear at a given temperature. Values of DeltaG degrees , DeltaH degrees and DeltaS degrees are tabulated.  相似文献   

12.
The FK506-FKBP12 binding-domain of the kinase FRAP (FRB) forms a classic up-down four-helical bundle. The folding pathway of this protein has been investigated using a combination of equilibrium and kinetic studies. The native state of the protein is stable with respect to the unfolded state by some 7 kcal mol(-1) at pH 6.0, 10 degrees C. A kinetic analysis of unfolding and refolding rate constants as a function of chemical denaturant concentration suggests that an intermediate state may be populated during folding at low concentrations of denaturant. The presence of this intermediate state is confirmed by refolding experiments performed in the presence of the hydrophobic dye 8-anilinonaphthalene-1 sulfonate (ANS). ANS binds to the partially folded intermediate state populated during the folding of FRB and undergoes a large change in fluorescence that can be detected using stopped-flow techniques. Analysis of the kinetic data suggests that the intermediate state is compact and it may even be a misfolded species that has to partially unfold before it can reach the transition state. Folding and unfolding rate constants in water are approximately 150-200 s(-1) and 0.005-0.06 s(-1), respectively, at neutral pH and 10 degrees C. The folding of FRB is somewhat slower than for other all-helical proteins, probably as a consequence of the formation of a metastable intermediate state. The folding rate constant in the absence of any populated intermediate can be estimated to be 8800 s(-1). Despite the presence of an intermediate state, which effectively slows folding, the protein still folds rapidly with a half-life of 5 ms at 10 degrees C. The dependence of the rate constants on denaturant concentration indicates that the transition state for folding is compact with some 80% of the surface area exposed in the unfolded state buried in the transition state. Data presented for FRB is compared with kinetic data obtained for other all-helical proteins.  相似文献   

13.
3He NMR spectroscopy has been used to study the equilibria of Diels-Alder additions of 9,10-dimethyl anthracene (DMA) to (3)He@C(60) and (3)He@C(70). Spectra of a series of equilibrium mixtures showed peaks for the isomeric adducts. One monoadduct, six bis-adducts, eleven tris-adducts, and ten tetrakis-adducts of DMA to C(60) were seen. One monoadduct and three bis-adducts of C(70) were detected. Equilibrium constants were found for these reactions and values for DeltaG, DeltaH, and DeltaS were obtained.  相似文献   

14.
Arsenic‐binding proteins are of toxicological importance since enzymatic activities can be blocked by arsenic interactions. In the present work, a novel methodology based on size exclusion chromatography coupled to electrospray ionization mass spectrometry (SEC‐ESI‐MS) was developed with special emphasis to preserve the intact proteins and their arsenic bindings. The eluent composition of 25 mM Tris/HCl, pH 7.5, with the addition of 100‐mM NaCl optimized for SEC with UV detection provided the highest SEC separation efficiency, but was not compatible with the ESI‐MS because of the non‐volatility of the buffer substance and of the salt additive. In order to find the best compromise between chromatographic separation and ionization of the arsenic‐binding proteins, buffer type and concentration, pH value, portion of organic solvent in the SEC eluent as well as the flow rate were varied. In the optimized procedure five different arsenic‐binding peptides and proteins (glutathione, oxytocin, aprotinin, α‐lactalbumin, thioredoxin) covering a molar mass range of 0.3–14 kDa could be analyzed using 75% 10‐mM ammonium formate, pH 5.0/25% acetonitrile (v : v) as eluent and a turbo ion spray source operated at 300 °C and 5.5 kV. A complete differentiation of all peptides and proteins involved in the arsenic‐binding studies as well as of their arsenic‐bound forms has become feasible by means of the extracted ion chromatograms (XIC) of the mass spectrometric detection. The new method offered the possibility to estimate equilibrium constants for the reaction of phenylarsine oxide with different thiol‐containing biomolecules by means of the XIC peak areas of reactants and products. Limits of detection in the range of 2–10 µM were obtained by SEC‐ESI‐MS for the individual proteins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A Zn/Al hydrotalcite-like compound (HTlc) was prepared by co-precipitation (at constant pH) method and was characterized by XRD, TG/DTA, FTIR, and BET surface area. The ability of Zn/Al oxide to remove F- from aqueous solution was investigated. All the adsorption experiments were carried out as a function of time, pH, concentration of adsorbate, adsorbent dose, temperature etc. It was found that the maximum adsorption takes place within 4 h at pH 6.0. The percentage of adsorption increases with increase in the adsorbent dose, but decreases with increase in the adsorbate concentration. From the temperature variation it was found that the percentage of adsorption decreases with increase in temperature, which shows that the adsorption process is exothermic in nature. The adsorption data fitted well into the linearly transformed Langmuir equation. Sulfate and phosphate were found to have profound effects on fluoride removal. Thermodynamic parameters such as DeltaG0, DeltaH0, and DeltaS0 were calculated. The negative value of DeltaH0 indicates that the adsorption process is exothermic. The apparent equilibrium constants (Ka) are also calculated and found to decrease with increase in temperature. With 0.01 M NaOH the adsorbed F- could be completely desorbed from Zn/Al oxide in 6 h.  相似文献   

16.
The infrared spectra of a series of aqueous solutions containing phthalic acid (1,2-benzenedicarboxylic acid) and varying pH were examined using attenuated total reflection Fourier transform infrared spectroscopy and potentiometry. The basis spectra of phthalic acid, the hydrogen phthalate ion, and the phthalate ion were isolated using a factor analysis in which the absorbance of these species varies with pH and total phthalate concentration according to equilibrium and mass balance relations. Assignments of these basis spectra were made by comparison with spectra calculated ab initio. The conditional formation constants of phthalic acid and the hydrogen phthalate ion were determined at 25.0+/-0.1 degrees C in 0.6 M NaCl ionic media using infrared spectroscopy and in 1.5 M NaCl ionic media using both infrared spectroscopy and potentiometry.  相似文献   

17.
In most cases, kinetic unfolding reactions of proteins follow a simple one-step mechanism that does not involve any detectable intermediates. One example for a more complicated unfolding reaction is the acid-induced denaturation of holo-myoglobin (hMb). This reaction proceeds through a transient intermediate and can be described by a sequential two-step mechanism (Konermann et al. Biochemistry 1997, 36, 6448-6454). Time-resolved electrospray ionization mass spectrometry (ESI MS) is a new technique for monitoring the kinetics of protein folding and unfolding in solution. Different protein conformations can be distinguished by the different charge state distributions that they generate during ESI. At the same time this technique allows monitoring the loss or binding of noncovalent protein ligands. In this work, time-resolved ESI MS is used to study the dependence of the kinetic unfolding mechanism of hMb on the specific solvent conditions used in the experiment. It is shown that hMb unfolds through a short-lived intermediate only at acidic pH. Under basic conditions no intermediate is observed. These findings are confirmed by the results of optical stopped-flow absorption experiments. This appears to be the first time that a dependence of the kinetic mechanism for protein unfolding on external conditions such as pH has been observed.  相似文献   

18.
The thermal stability of a redox enzyme, bilirubin oxidase (BOD), has been quantitatively evaluated by measuring the inactivation kinetics of BOD at several temperatures. The enzyme activity is directly related to the mediated bioelectrocatalytic current for the BOD-catalyzed reduction of O(2). Thus, the inactivation process is measured by the time-dependent decrease in the bioelectrocatalytic current. The results reveal that the inactivation obeys first-order kinetics, whose rate constants (k) are determined at pH 7.0 and at 50 - 70 degrees C. The half life of BOD activity, calculated from the k value at 50 degrees C is 114 min, which is in harmony with the thermal-stability data given in a catalog by Amano Enzyme Inc. The bioelectrocatalysis method allows in situ measurements of the inactivation kinetics in the period of a few minutes at relatively high temperatures. The rate constants show a large temperature dependence, leading to a large Arrhenius activation energy (E(A)) of 221 kJ mol(-1). The activation Gibbs energy (DeltaG(not equal)), activation enthalpy (DeltaH(not equal)), and activation entropy (DeltaS(not equal)) are also determined.  相似文献   

19.
Described here is the impact of so-called non-EX2 exchange behavior on the accuracy of protein unfolding free energies (i.e., DeltaG u values) and m values (i.e.,-deltaDeltaG u/delta[denaturant] values) determined by an H/D exchange and mass spectrometry-based technique termed stability of unpurified proteins from rates of H/D exchange (SUPREX). Both experimental and theoretical results on a model protein, ubiquitin, reveal that reasonably accurate thermodynamic parameters for its folding reaction can be determined by SUPREX even when H/D exchange data is collected in a non-EX2 regime. Not surprisingly, the theoretical results reported here on a series of hypothetical protein systems with a wide range of biophysical properties show that the accuracy of SUPREX-derived DeltaG u and m values is compromised for many proteins when analyses are performed at high pH (e.g., pH 9) and for selected proteins with specific biophysical parameters (e.g., slow folding rates) when analyses are performed at lower pH. Of more significance is that the experimental and theoretical results reveal a means by which problems with non-EX2 exchange behavior can be detected in the SUPREX experiment without prior knowledge of the protein's biophysical properties. The results of this work also reveal that such problems with non-EX2 exchange behavior can generally be minimized if appropriate H/D exchange times are employed in the SUPREX experiment to yield SUPREX curve transition midpoints at chemical denaturant concentrations less than 2 M.  相似文献   

20.
Trapp O 《Electrophoresis》2006,27(3):534-541
The unified equation was validated for first order reactions in dynamic CE with a data set of 31 250 elution profiles. Comparison with the results from conventional iterative computer simulation revealed that the unified equation is superior in terms of success rate and precision. The unified equation was applied to determine the cis-trans isomerization rate constants of the angiotensin converting enzyme inhibitor captopril. The separation of the rotational cis-trans isomeric drug has been performed in an aqueous 66 mM citric acid/Tris buffer at pH 3.0 in a 50 cm polyacrylamide-coated fused-silica capillary. Interconversion profiles featuring pronounced plateau formation and peak broadening were observed. Activation parameters DeltaH not equal and DeltaS not equal were obtained from temperature-dependent measurements between 10 and 25 degrees C in 2.5 K steps. From the activation parameters the isomerization barriers of captopril at 37 degrees C under acidic conditions were calculated to be DeltaG not equal trans-->cis=90.6 kJ/mol and DeltaG not equal cis-->trans=84.6 kJ/mol. By comparison of the kinetic data with the results obtained under basic conditions (pH 9.3) a mechanism of isomerization could be proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号