首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Applications of synchrotron radiation X-ray fluorescence (SR-XRF) microscopy combined with scanning electron microscopy (SEM) are reported. Electron beam excited and synchrotron radiation induced X-ray emission spectra of the same yellow sand single particles are reported and compared. The Ti-K edge absorption fine structure of single microparticles of TiO2 (rutile, anatase, and a photocatalyst aerosol) are recorded by using monochromatic synchrotron radiation of tunable energy. It is shown that the discrimination between rutile and anatase is possible. Based on the single particle speciation, the toxicity of photocatalyst aerosol powder is discussed.  相似文献   

2.
X-ray microscopy based on synchrotron radiation has become a fundamental tool in biology and life sciences to visualize the morphology of a specimen. These studies have particular requirements in terms of radiation damage and the image exposure time, which directly determines the total acquisition speed. To monitor and improve these key parameters, we present a novel X-ray microscopy method using a high-resolution zone plate as the objective and the matching condenser. Numerical simulations based on the scalar wave field theory validate the feasibility of the method and also indicate the performance of X-ray microscopy is optimized most with sub-10-nm-resolution zone plates. The proposed method is compatible with conventional X-ray microscopy techniques, such as computed tomography, and will find wide applications in time-resolved and/or dose-sensitive studies such as living cell imaging.  相似文献   

3.
The C 1s, Si 2p, Si 2s, and O 1s inner-shell excitation spectra of vinyltriethoxysilane, trimethylethoxysilane, and vinyltriacetoxysilane have been recorded by electron energy loss spectroscopy under scattering conditions dominated by electric dipole transitions. The spectra are converted to absolute optical oscillator strength scales and interpreted with the aid of ab initio calculations of the inner-shell excitation spectra of model compounds. Electron energy loss spectra recorded in a transmission electron microscope on partly cured adhesion promoter, atomic force micrographs, and images and X-ray absorption spectra from X-ray photoemission electron microscopy of as-spun and cured vinyltriacetoxysilane-based adhesion promoter films on silicon are presented. The use of these measurements in assisting chemistry studies of adhesion promoters for electronics applications is discussed.  相似文献   

4.
Three-dimensional (3D) nanoscale structures of the fission yeast, Schizosaccharomyces pombe, can be obtained by full-field transmission hard X-ray microscopy with 30 nm resolution using synchrotron radiation sources. Sample preparation is relatively simple and the samples are portable across various imaging environments, allowing for high-throughput sample screening. The yeast cells were fixed and double-stained with Reynold's lead citrate and uranyl acetate. We performed both absorption contrast and Zernike phase contrast imaging on these cells in order to test this method. The membranes, nucleus, and subcellular organelles of the cells were clearly visualized using absorption contrast mode. The X-ray images of the cells could be used to study the spatial distributions of the organelles in the cells. These results show unique structural information, demonstrating that hard X-ray microscopy is a complementary method for imaging and analyzing biological samples.  相似文献   

5.
Soft X-ray absorption spectra of sulfur K edge were measured for diesel exhaust particles from three different vehicles. The X-ray spectra were measured using a synchrotron radiation beamline. The spectra were measured by surface sensitive total electron yield method and bulk sensitive X-ray fluorescence yield method. One vehicle concentrated the S2− on the surface of the emission particles; the others did not concentrate S2−. This type of chemical state analysis method is useful for the process analysis such as diesel emissions.  相似文献   

6.
The development of high-reflectivity devices for soft X-rays at quasi-normal incidence is a challenging research for the development of synchrotron radiation optics, particularly for soft X-ray microscopy and X-ray microprobe spectroscopy. Here we present data concerning the deposition of the first Ni/Ti and Ni/TiO2 multilayers grown at the INFN Legnaro Laboratories (LNL). These multilayers have a lattice spacing in the order of 14 Å and more than 100 of bilayers. Experimental tests on these multilayers have been performed by a vacuum compatible θ–2θ reflectometer, set up at the INFN Frascati Laboratories (LNF), where their characterization has been accomplished by means of synchrotron radiation.The first multilayer mirrors tailored in order to work at quasi-normal geometry have been measured in the lower X-ray energy domain using both white-beam and monochromatic radiation at about 1 keV.  相似文献   

7.
XPS研究单壁碳纳米管(SWNTs)上碳与碘形成的共价键   总被引:4,自引:0,他引:4  
采用简单的氯胺-T反应制备了碘化的多羟基单壁碳纳米管(SWNTols),发现碘与SWNTols的碳形成共价键.用同步辐射光电子能谱(SRXPS)和光电子能谱(XPS)测量发现,样品的碘的电子结合能与两个具有C-I共价键的参考物——苯的衍生物,完全一致,而与具有离子性质的NaI的结合能不同.这个结果对单壁碳纳米管今后的生物医学应用研究有实际意义.  相似文献   

8.
This review describes the versatile chemistry of photolithographic imaging materials developed for nanofabrication of semiconductor devices. Conventional photoresists based on novolac/diazonaphthoquinone systems are not appropriate for the generation of relief images under sub-100 nm. In order to employ deep UV radiation techniques that are required for nanopattern generation, such as with 248, 193 and 157 nm excimer lasers, completely different strategies are required. Incorporation of chemical amplification concept into the design of resist systems has led to significant breakthroughs in the photolithography industry. In a chemically amplified resist system, a cascade of chemical events is promoted by photochemically generated initiating molecules. This leads to changes in the chemical or physical properties of the resist systems which typically develop during the postexposure baking procedure. Polarity change of the resist polymer along with depolymerization and crosslinking strategies has been widely employed in chemically amplified systems. Chemistry related to radiation resists using high-energy photons and charged particles, such as extreme-UV, X-ray, electron beam, ion beam has also been developed.  相似文献   

9.
The crystallization of thin silicon carbonitride layers obtained by chemical vapor deposition from silicon organic precursors on gallium arsenide substrates at 973 K in the presence of liquid gallium drops is studied. The layers grown by the vapor-liquid-solid method are studied by IR, Raman, and energy dispersive spectroscopy, scanning electron microscopy, and X-ray diffraction using synchrotron radiation in order to determine their chemical and phase composition, crystal structure, and surface morphology. Their morphology is supposed to be associated with the formation of nuclei in a gallium drop located at the surface of the gallium arsenide substrate.  相似文献   

10.
The Kosa (yellow sand) aerosol affects the global environment as well as human health because it migrates from the interior of China to other areas, absorbing various atmospheric elements. Investigation into individual Kosa aerosol particles, which are submicroscopic to several tens of micrometers in diameter, is required to resolving the issue. We installed a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDX) on a synchrotron radiation (SR) beam line and introduced the SR beam into the SEM chamber for combinatorial application of SEM-EDX and SR X-ray fluorescence (SR-XRF) spectrometry to individual particles. It should be noted that detailed topographic observation by SEM and sensitive elemental analysis by SR-XRF, both crucial for individual particle measurement but which previously had to be carried out separately, were jointly performed inside the SEM chamber in this setup. Here, we show that SR-XRF results, in conjunction with SEM images, contributed toward resolving individual particle dispositions. Atmospheric sulfur primarily adheres to calcium in the aerosol particles and the particle surface roughens as a consequence of the chemical reaction between the two elements.  相似文献   

11.
SPring-8 is the largest third-generation synchrotron radiation facility in the world. Synchrotron radiation is the most powerful light source currently available, especially in the EUV and X-ray regions, and in the research area of catalysis synchrotron radiation offers a very useful analysis method, i.e. XAFS. This spectroscopic investigative technique enables the determination of the chemical states and local structure of the atoms in the specific elements of a sample. Here, we introduce the SPring-8 facility and report how synchrotron radiation XAFS spectroscopy is utilized for the characterization and analysis of catalysts.  相似文献   

12.
Characterization of trabeculae structures is one of the most important applications of imaging techniques in the biomedical area. The aim of this study was to investigate structure modifications in trabecular and cortical bones using non destructive techniques such as X-ray microtomography, X-ray microfluorescence by synchrotron radiation and scanning electron microscopy. The results obtained reveal the potential of this computational technique to verify the capability of characterization of internal bone structures.  相似文献   

13.
Until recently, items of cultural heritage significance have been studied only using laboratory-based techniques. Improvements in the design of synchrotron radiation sources have made it possible to undertake experiments on objects of cultural heritage experience which had hitherto been impossible. Experimental techniques used in conservation science studies range from infrared microscopy to X-ray diffraction and fluorescence (both micro- and macro-diffraction), to small and wide angle X-ray scattering (SAXS/WAXS) (both micro- and macro-scattering). Here, we describe studies of important artefacts held by Australian national collecting agencies using both laboratory- and synchrotron-based analytical techniques and particle beam X-ray emission (PIXE). As well, a new technique for studying easel paintings, hyperspectral imaging, will be introduced.  相似文献   

14.
Photocatalytic oxidation of glycerol at ambient conditions has been investigated with the use of Zinc oxide photocatalysts. Zinc oxide nanorods were prepared via a simple hydrothermal method using zinc nitrate and sodium hydroxide in the solution pH of 7, 8 and 9. The samples prepared in this way were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) and ultraviolet–visible spectroscopy (UV–vis). The pH of the solution is 7, the sample contains zinc hydroxide nitrate hydrated. When the pH of solution was adjusted to 8 and 9, the samples consisted of pure hexagonal wurtzite ZnO without impurity detection. The influence of solution pH on hydrogen formation was investigated. The wurtzite ZnO nanorods synthesized in a solution with pH 9 are considered promising photocatalysts for hydrogen production under xenon radiation.  相似文献   

15.
Specific features of elemental composition analysis of silicon carbonitride thin films by energy dispersive spectroscopy (EDS) are considered. The films were preliminarily examined by IR spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron (SEM) and atomic force microscopy (AFM), and X-ray diffraction analysis using synchrotron radiation (SR-XRD) to acquire data on their chemical and phase composition, crystalline structure and surface morphology. The effect of film thickness, substrate material and electron beam energy on the results of energy dispersive analysis was investigated.  相似文献   

16.
X-ray microscopic techniques are excellent and presently emerging techniques for chemical imaging of heterogeneous catalysts. Spatially resolved studies in heterogeneous catalysis require the understanding of both the macro and the microstructure, since both have decisive influence on the final performance of the industrially applied catalysts. A particularly important aspect is the study of the catalysts during their preparation, activation and under operating conditions, where X-rays have an inherent advantage due to their good penetration length especially in the hard X-ray regime. Whereas reaction cell design for hard X-rays is straightforward, recently smart in situ cells have also been reported for the soft X-ray regime. In the first part of the tutorial review, the constraints from a catalysis view are outlined, then the scanning and full-field X-ray microscopy as well as coherent X-ray diffraction imaging techniques are described together with the challenging design of suitable environmental cells. Selected examples demonstrate the application of X-ray microscopy and tomography to monitor structural gradients in catalytic reactors and catalyst preparation with micrometre resolution but also the possibility to follow structural changes in the sub-100 nm regime. Moreover, the potential of the new synchrotron radiation sources with higher brilliance, recent milestones in focusing of hard X-rays as well as spatiotemporal studies are highlighted. The tutorial review concludes with a view on future developments in the field of X-ray microscopy that will have strong impact on the understanding of catalysts in the future and should be combined with in situ electron microscopic studies on the nanoscale and other spectroscopic studies like microRaman, microIR and microUV-vis on the macroscale.  相似文献   

17.
Barium titanate nanowires synthesized with a surfactant-free hydrothermal method have been characterized by various techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), synchrotron X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The TEM and SEM analyses show the uniform cylindrical nanowires. The Rietveld refinement with synchrotron X-ray powder diffraction showed that the lattice parameters of cubic and tetragonal phases were a (= b = c) = 4.0134 A and a (= b) = 3.9998 A, c = 4.0303 A, respectively. The final weighted R-factor, R(wp), was 6.75% and the goodness of fit indicator was 1.30. The mass fraction of tetragonal and cubic phases based on the refined scale factor for the two phases were 98.4% and 1.6%, respectively, which clearly show the nanowires are tetragonal. The XPS analysis has shown that as-obtained BaTiO3 nanowires were phase pure. The Raman spectra confirm the tetragonal phase of the BaTiO3 nanowires. The dielectric constant measurement shows the shift in the transition temperature (Tc = 105 degrees C) compared to the bulk transition temperature (Tc = 132 degrees C). The dielectric constant at Tc was 174 measured at 1 kHz frequency.  相似文献   

18.
A calibration procedure for the detection efficiency of energy dispersive X-ray spectrometers (EDS) used in combination with scanning electron microscopy (SEM) for standardless electron probe microanalysis (EPMA) is presented. The procedure is based on the comparison of X-ray spectra from a reference material (RM) measured with the EDS to be calibrated and a reference EDS. The RM is certified by the line intensities in the X-ray spectrum recorded with a reference EDS and by its composition. The calibration of the reference EDS is performed using synchrotron radiation at the radiometry laboratory of the Physikalisch-Technische Bundesanstalt. Measurement of RM spectra and comparison of the specified line intensities enables a rapid efficiency calibration on most SEMs. The article reports on studies to prepare such a RM and on EDS calibration and proposes a methodology that could be implemented in current spectrometer software to enable the calibration with a minimum of operator assistance.  相似文献   

19.
Hamburg workshop on the "application of synchrotron radiation in chemistry"With grazing incidence small-angle X-ray scattering (GISAXS) the limitations of conventional small-angle X-ray scattering with respect to extremely small sample volumes in the thin-film geometry are overcome. GISAXS turned out to be a powerful advanced scattering technique for the investigation of nanostructured polymer films. Similar to atomic force microscopy (AFM), a large interval of length between molecular and mesoscopic scales is detectable with a surface-sensitive scattering method. While with AFM only surface topographies are accessible, with GISAXS the buried structure is also probed. Because a larger surface area is probed, GISAXS also has a much larger statistical significance compared to AFM. Due to the high demand on collimation, GISAXS experiments are based on synchrotron radiation. Nanostructures parallel and perpendicular to the sample surface observable in thin poly(styrene- block-isoprene) diblock copolymer films are presented as an example of the possibilities of GISAXS.  相似文献   

20.
Synchrotron radiation(SR) provides highly brilliant light with tunable wavelength from hard X-ray to far infrared, on which scattering, spectroscopy and imaging techniques with high time and spatial resolutions have been developed for in situ study on biological system and materials like polymer. With examples on flow-induced crystallization of polymer, deformation of nanoparticle filler network in rubber composite and necking propagation in tensile stretch, current work attempts to demonstrate the advantages of in situ synchrotron radiation X-ray scattering, X-ray nano-CT and infrared imaging in the study of deformation-induced multi-scale structural evolutions of polymers. With time resolution up to sub-ms, synchrotron radiation is expected to play a great role in understanding non-equilibrium polymer physics under processing and service conditions, while high-throughput characterization platform based on synchrotron radiation opens the possibility to establish polymer Materials Genome database in processing parameter space within reasonable time, which can serve as the roadmap for industrial polymer processing and accelerate material innovation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号