首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For Gaussian vector fields {X(t) ∈ Rn:tRd} we describe the covariance functions of all scaling limits Y(t) = Llimα↓0 B?1(α) Xt) which can occur when B(α) is a d × d matrix function with B(α) → 0. These matrix covariance functions r(t, s) = EY(t) Y1(s) are found to be homogeneous in the sense that for some matrix L and each α > 0, (1) r(αt, αs) = αL1r(t, s) αL. Processes with stationary increments satisfying (1) are further analysed and are found to be natural generalizations of Lévy's multiparameter Brownian motion.  相似文献   

2.
The message m = {m(t)} is a Gaussian process that is to be transmitted through the white Gaussian channel with feedback: Y(t) = ∫0tF(s, Y0s, m)ds + W(t). Under the average power constraint, E[F2(s, Y0s, m)] ≤ P0, we construct causally the optimal coding, in the sense that the mutual information It(m, Y) between the message m and the channel output Y (up to t) is maximized. The optimal coding is presented by Y(t) = ∫0t A(s)[m(s) ? m?(s)] ds + W(t), where m?(s) = E[m(s) ¦ Y(u), 0 ≤ u ≤ s] and A(s) is a positive function such that A2(s) E |m(s) ? m?(s)|2 = P0.  相似文献   

3.
Let ζ(t), η(t) be continuously differentiable Gaussian processes with mean zero, unit variance, and common covariance function r(t), and such that ζ(t) and η(t) are independent for all t, and consider the movements of a particle with time-varying coordinates (ζ(t), η(t)). The time and location of the exists of the particle across a circle with radius u defines a point process in R3 with its points located on the cylinder {(t, u cos θ, u sin θ); t ≥ 0, 0 ≤ θ < 2π}. It is shown that if r(t) log t → 0 as t → ∞, the time and space-normalized point process of exits converges in distribution to a Poisson process on the unit cylinder. As a consequence one obtains the asymptotic distribution of the maximum of a χ2-process, χ2(t) = ζ2(t) + η2(t), P{sup0≤tTχ2(t) ≤ u2} → e?τ if T(?r″(0))12u × exp(?u22) → τ as T, u → ∞. Furthermore, it is shown that the points in R3 generated by the local ?-maxima of χ2(t) converges to a Poisson process in R3 with intensity measure (in cylindrical polar coordinates) (2πr2)?1dtdr. As a consequence one obtains the asymptotic extremal distribution for any function g(ζ(t), η(t)) which is “almost quadratic” in the sense that g1(r cos θ, r sin θ) = 12(r2 ? g(r cos θ, r sin θ)) has a limit g1(θ) as r → ∞. Then P{sup0≤t≤T g(ζ(t), η(t)) ≤ u2} → exp(?(τ) ∫ θ = 0 e?g1(θ) dθ) if T(?r″(0))12u exp(?u22) → τ as T, u → ∞.  相似文献   

4.
Let Ωm be the set of partitions, ω, of a finite m-element set; induce a uniform probability distribution on Ωm, and define Xms(ω) as the number of s-element subsets in ω. We alow the existence of an integer-valued function n=n(m)(t), t?[0, 1], and centering constants bms, 0?s? m, such that
Z(m)(t)=s=0n(m)(t)(Xms?bms)s=0mbms
converges to the ‘Brownian Bridge’ process in terms of its finite-dimensional distributions.  相似文献   

5.
Let X1,X2,… be i.i.d. random variables with a continuous distribution function. Let R0=0, Rk=min{j>Rk?1, such that Xj>Xj+1}, k?1. We prove that all finite-dimensional distributions of a process W(n)(t)=(R[nt]?2[nt])23n, t ? [0,1], converge to those of the standard Brownian motion.  相似文献   

6.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

7.
Let {Xn, n ≥ 1} be a real-valued stationary Gaussian sequence with mean zero and variance one. Let Mn = max{Xt, in} and Hn(t) = (M[nt] ? bn)an?1 be the maximum resp. the properly normalised maximum process, where cn = (2 log n)12, an = (log log n)cn and bn = cn ? 12(log(4π log n))cn. We characterize the almost sure limit functions of (Hn)n≥3 in the set of non-negative, non-decreasing, right-continuous, real-valued functions on (0, ∞), if r(n) (log n)3?Δ = O(1) for all Δ > 0 or if r(n) (log n)2?Δ = O(1) for all Δ > 0 and r(n) convex and fulfills another regularity condition, where r(n) is the correlation function of the Gaussian sequence.  相似文献   

8.
Let {Xn} be a stationary Gaussian sequence with E{X0} = 0, {X20} = 1 and E{X0Xn} = rnn Let cn = (2ln n)built12, bn = cn? 12c-1n ln(4π ln n), and set Mn = max0 ?k?nXk. A classical result for independent normal random variables is that
P[cn(Mn?bn)?x]→exp[-e-x] as n → ∞ for all x.
Berman has shown that (1) applies as well to dependent sequences provided rnlnn = o(1). Suppose now that {rn} is a convex correlation sequence satisfying rn = o(1), (rnlnn)-1 is monotone for large n and o(1). Then
P[rn-12(Mn ? (1?rn)12bn)?x] → Ф(x)
for all x, where Ф is the normal distribution function. While the normal can thus be viewed as a second natural limit distribution for {Mn}, there are others. In particular, the limit distribution is given below when rn is (sufficiently close to) γ/ln n. We further exhibit a collection of limit distributions which can arise when rn decays to zero in a nonsmooth manner. Continuous parameter Gaussian processes are also considered. A modified version of (1) has been given by Pickands for some continuous processes which possess sufficient asymptotic independence properties. Under a weaker form of asymptotic independence, we obtain a version of (2).  相似文献   

9.
10.
A general branching process begins with a single individual born at time t=0. At random ages during its random lifespan L it gives birth to offspring, N(t) being the number born in the age interval [0,t]. Each offspring behaves as a probabilistically independent copy of the initial individual. Let Z(t) be the population at time t, and let N=N(∞). Theorem: If a general branching process is critical, i. e E{N}=1, and if σ2=E {N(N?1)}<∞, 0<a≡0 tdE{N(t)},and as t → ∞ both t2(1?E {N(t)})→0 and t2P[L>t]→0, then tP[Z(t)>0]→2aσ2 as t→∞.  相似文献   

11.
Let {X(t), 0 ≤ tT} and {Y(t), 0 ≤ tT} be two additive processes over the interval [0, T] which, as measures over D[0, T], are absolutely continuous with respect to each other. Let μX and μY be the measures over D[0, T] determined by the two processes. The characteristic function of ln(XY) with respect to μY is obtained in terms of the determining parameters of the two processes.  相似文献   

12.
Let (μt)t=0 be a k-variate (k?1) normal random walk process with successive increments being independently distributed as normal N(δ, R), and μ0 being distributed as normal N(0, V0). Let Xt have normal distribution N(μt, Σ) when μt is given, t = 1, 2,….Then the conditional distribution of μt given X1, X2,…, Xt is shown to be normal N(Ut, Vt) where Ut's and Vt's satisfy some recursive relations. It is found that there exists a positive definite matrix V and a constant θ, 0 < θ < 1, such that, for all t?1,
|R12(V?1t?V?1R12|<θt|R12(V?10?V?1)R12|
where the norm |·| means that |A| is the largest eigenvalue of a positive definite matrix A. Thus, Vt approaches to V as t approaches to infinity. Under the quadratic loss, the Bayesian estimate of μt is Ut and the process {Ut}t=0, U0=0, is proved to have independent successive increments with normal N(θ, Vt?Vt+1+R) distribution. In particular, when V0 =V then Vt = V for all t and {Ut}t=0 is the same as {μt}t=0 except that U0 = 0 and μ0 is random.  相似文献   

13.
Let {Xi, i?0} be a sequence of independent identically distributed random variables with finite absolute third moment. Then Darling and Erdös have shown that
for -∞<t<∞ where μn = max0?k?n k-12ki=0xi and Xn = (2 ln ln n)12. The result is extended to dependent sequences but assuming that {Xi} is a standard stationary Gaussian sequence with covariance function {ri}. When {Xi} is moderately dependent (e.g. when v(∑ni=1Xi) ? na, 0 < a < 2) we get
where Ha is a constant. In the strongly dependent case (e.g. when v(∑ni=1Xi) ? n2r(n)) we get
for-∞<t<∞.  相似文献   

14.
Two related almost sure limit theorems are obtained in connection with a stochastic process {ξ(t), ?∞ < t < ∞} with independent increments. The first result deals with the existence of a simultaneous stabilizing function H(t) such that (ξ(t) ? ξ(0))H(t) → 0 for almost all sample functions of the process. The second result deals with a wide-sense stationary process whose random spectral distributions is ξ. It addresses the question: Under what conditions does (2T)?1?TTX(t)X(t + τ)dt converge as T → ∞ for all τ for almost all sample functions?  相似文献   

15.
Let X be a Banach space, let B be the generator of a continuous group in X, and let A = B2. Assume that D(Ar) is dense in X for r an arbitrarily large positive integer and that a and b are non-negative reals. Solution representations are developed for the abstract differential equation
(D2t + bt Dt ? A) · (D2t + at Dt ? A) u(t) = 0, t > 0
corresponding to initial conditions of the form: (i) u(0+) = φ, u(j)(0+) = 0, j = 1, 2, 3 and (ii) u2(0+) = φ, uj(0+) = 0, j = 0, 1, 3 (with φD(Ar)) for all choices of a and b.  相似文献   

16.
Let Ω be a smooth bounded domain in RN. Assume that f?0 is a C1-function on [0,∞) such that f(u)/u is increasing on (0,+∞). Let a be a real number and let b?0, b?0 be a continuous function such that b≡0 on . The purpose of this Note is to establish the asymptotic behaviour of the unique positive solution of the logistic problem Δu+au=b(x)f(u) in Ω, subject to the singular boundary condition u(x)→+∞ as dist(x,?Ω)→0. Our analysis is based on the Karamata regular variation theory. To cite this article: F.-C. Cîrstea, V. R?dulescu, C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

17.
Existence and boundedness theorems are given for solutions of nonlinear integrodifferential equations of type ddtu(t) + Bu(t) + ∝0t a(t, s) Au(s) ds ? f(t) (t > 0), (1.1) u(0) = u0, Here A and B are nonlinear, possibly multivalued, operators on a Banach space W and a Hilbert space H, where W ? H. The function f (0, ∞) → H and the kernel a(t, s): R × RR are known functions. The results of this paper extend the results of Crandall, Londen, and Nohel [4] for equation (1.1). They assumed the kernel to be of the type a(t, s) = a(t ? s). We relax this assumption and obtain similar results. Examples of kernels satisfying the conditions we require are given in section 4.  相似文献   

18.
Let Sp×p ~ Wishart (Σ, k), Σ unknown, k > p + 1. Minimax estimators of Σ?1 are given for L1, an Empirical Bayes loss function; and L2, a standard loss function (RiE(LiΣ), i = 1, 2). The estimators are Σ??1 = aS?1 + br(S)Ip×p, a, b ≥ 0, r(·) a functional on Rp(p+2)2. Stein, Efron, and Morris studied the special cases Σa?1 = aS?1 (EΣ?k?p?1?1 = Σ?1) and Σ?1?1 = aS?1 + (b/tr S)I, for certain, a, b. From their work R1?1, Σ?1?1; S) ≤ R1?1, Σ?a?1; S) (?Σ), a = k ? p ? 1, b = p2 + p ? 2; whereas, we prove R2?1Σ?a?1; S) ≤ R2?1, Σ?1?1; S) (?Σ). The reversal is surprising because L1?1, Σ?1?1; S) → L2?1, Σ?1?1; S) a.e. (for a particular L2). Assume R (compact) ? S, S the set of p × p p.s.d. matrices. A “divergence theorem” on functions Fp×p : RS implies identities for Ri, i = 1, 2. Then, conditions are given for Ri?1, Σ??1; S) ≤ Ri?1, Σ?1?1; S) ≤ Ri?1, Σ?a?1; S) (?Σ), i = 1, 2. Most of our results concern estimators with r(S) = t(U)/tr(S), U = p ∣S1/p/tr(S).  相似文献   

19.
Let U1, U2,… be a sequence of independent, uniform (0, 1) r.v.'s and let R1, R2,… be the lengths of increasing runs of {Ui}, i.e., X1=R1=inf{i:Ui+1<Ui},…, Xn=R1+R2+?+Rn=inf{i:i>Xn?1,Ui+1<Ui}. The first theorem states that the sequence (32n)12(Xn?2n) can be approximated by a Wiener process in strong sense.Let τ(n) be the largest integer for which R1+R2+?+Rτ(n)?n, R1n=n?(R1+R2+?+Rτ(n)) and Mn=max{R1,R2,…,Rτ(n),R1n}. Here Mn is the length of the longest increasing block. A strong theorem is given to characterize the limit behaviour of Mn.The limit distribution of the lengths of increasing runs is our third problem.  相似文献   

20.
We construct two d-dimensional independent diffusions Xta=a+∫0tu(Xsa,s)ds+νBta,Xtb=b+∫0tu(Xsb,s)ds+νBtb, with the same viscosity ν≠0 and the same drift u(x,t)=(ta(x)v1+(1?p)ρtb(x)v2)/(ta(x)+(1?p)ρtb(x)), where ρta,ρtb are respectively the density of Xta and Xtb. Here a,b,v1,v2Rd and p∈(0,1) are given. We show that t(x)=pρta(x)+(1?p)ρtb(x),u(x,t):t?0,x∈Rd) is the unique weak solution of the following pressureless gas system
S(d,ν)?t(ρ)+j=1d?xj(ujρ)=ν22Δ(ρ),?t(uiρ)+j=1d?xj(uiujρ)=ν22Δ(uiρ),?1?i?d,
such that ρt(x)dx→pδa+(1?p)δb,u(x,t)ρt(x)dx→pv1δa+(1?p)v2δb as t→0+. To cite this article: A. Dermoune, S. Filali, C. R. Acad. Sci. Paris, Ser. I 337 (2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号