首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lanthanum chromite LaCrO3, an important catalyst and interconnect material used in solid oxide fuel cell was prepared from lanthanumtrisoxalatochromate(III) hydrate [LaCr(C2O4)3]·9H2O (LTCR) employing microwave heating technique. The compound LTCR heated in microwave heating system gave pure LaCrO3 at 500°C within one hour. However LTCR heated in silicon carbide furnace yielded LaCrO3 at 900°C. BET surface area of LaCrO3 prepared by microwave and conventional heating techniques were found to be 2.8 and 1.2 m2 g−1, respectively. Thermogravimetry, differential thermal analysis and X-ray diffraction techniques were used to optimize the conditions for the microwave processing of the precursor.  相似文献   

2.
Atomic models are proposed for nanotubes of the titanium silicocarbides Ti2SiC, Ti3SiC2, and Ti4SiC3, and their electronic structure and interatomic interactions are investigated by the density functional tight-binding method (DFTB) in comparison with the corresponding crystalline phases. Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 45, No. 2, pp. 88-92, March-April, 2009.  相似文献   

3.
Lanthanum cobaltite LaCoO3, an important catalyst and an electronic material used as cathode in solid oxide fuel cells was prepared from lanthanum trisoxalatocobaltate(III) hydrate [LaCo(C2O4)3]·9H2O (LTC) employing microwave heating technique. It was observed that LTC heated in microwave heating system gives a pure product of LaCoO3 at 400°C within one hour. Thermogravimetry, differential thermal analysis and X-ray diffraction techniques were used to optimize conditions for microwave processing of the precursor.Authors are thankful to Mr. N. A. Kulkarni and Mr. V. M. Chopade from TIFR, Mumbai for recording the XRD patterns of the sample.  相似文献   

4.
The electrode behavior and microstructure of freshly prepared (La0.8Sr0.2)0.9MnO3 (LSM) electrodes were investigated under various polarization conditions. The original, large agglomerates in freshly prepared LSM electrodes were broken down into sphere-shaped grains when exposed to cathodic or anodic current passage of 200 mA cm–2 at 800 °C in air for 3 h. Microstructural changes under cathodic polarization could be related to the pronounced diffusion and migration of oxygen vacancies and Mn ions on the LSM surface and lattice expansion, while lattice shrinkage under oxidation conditions most likely contributes to the structural changes under anodic polarization. Such morphological changes were irreversible and were found to be beneficial to the performance of freshly prepared LSM electrodes. Freshly prepared LSM electrodes behaved very differently with respect to the cathodic and anodic current passage treatment.  相似文献   

5.
Ca3Co4O9 powder was prepared by a polyacrylamide gel route in this paper. The effect of the processing on microstructure and thermoelectric properties of Ca3Co4O9 ceramics via spark plasma sintering were investigated. Electrical measurement shows that the Seebeck coefficient and conductivity are 170 μV/K and 128 S/cm, respectively, at 700 °C, yielding a power factor value of 3.70 × 10−4 W m−1 K−2 at 700 °C, which is larger than that of Ca3Co4O9 ceramics via solid-state reaction processing. The polyacrylamide gel processing is a fast, cheap, reproducible and easily scaled up chemical route to improve the thermoelectric properties of Ca3Co4O9 ceramics by preparing the homogeneous and pure Ca3Co4O9 phase.  相似文献   

6.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

7.
Areas of fusion and crystallization peaks of K3TaO2F4 and KTaF6 were measured using the DSC mode of a high-temperature calorimeter (SETARAM 1800 K). On the basis of these quantities, considering the temperature dependence of the calorimeter sensitivity, values of the fusion enthalpy of K3TaO2F4 at the fusion temperature of 1181 K of (43 ± 4) kJ mol−1 and of KTaF6 at the fusion temperature of 760 K of (8 ± 1) kJ mol−1 were determined.  相似文献   

8.
The impedance of a porous gold electrode in contact with solid electrolyte La0.88Sr0.12Ga0.82Mg0.18O2.85 and the effect of the manufacture conditions on its polarization resistance are studied at 600–800°C in air. The overall oxygen reaction rate on a gold electrode is described as the sum of two partial constituents, namely, the oxygen exchange at the gas/electrolyte interface at the gold/gas/electrolyte triple-phased boundary.Translated from Elektrokhimiya, Vol. 41, No. 2, 2005, pp. 190–197.Original Russian Text Copyright © 2005 by Shkerin, Sokolova, Khlupin, Beresnev.This revised version was published online in April 2005 with corrections to the article note and article title and cover date.  相似文献   

9.
Vibrational spectra of finely divided amorphous CsHSO4,Cs5H3(SO4)4 · H2O, and composites based on these are measured and analyzed. An analysis of the spectra indicates the occurrence of substantial changes in the system of hydrogen bonds and in the spectral range of the sulfate group of acid sulfates in the composites. Structural dynamics of the SO4 tetrahedrons is in full conformance with protonic conduction and the data of x-ray diffraction analyses accompanied by differential scanning calorimetry. It is shown that mobility of protons in the composites increases. A mechanism of the formation of the composites and their conduction is proposed.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 640–645.Original Russian Text Copyright © 2005 by Ponomareva, Lavrova, Burgina.  相似文献   

10.
The calculations of the electronic structure of layered polyvanadate K2V3O8 were made employing the spin-polarized tight-binding LMTO method. Calculated magnetic moment for K4V6O16 compound phase equals 1.97 μB. V-O interactions were established to be dominating in the chemical bonding generation in this polyvanadate according to the estimated crystal orbital overlap population. The covalent bonds V(2)-V(2) in V(2)2O7 groups and electron density localization on vanadium atoms in isolated pyramids V(1)O5 were found.  相似文献   

11.
The reaction mechanism of (CH3)3CO. radical with NO is theoretically investigated at the B3LYP/6-31G* level. The results show that the reaction is multi-channel in the single state and triplet state. The potential energy surfaces of reaction paths in the single state are lower than that in the triple state. The balance reaction: (CH3)3CONO⇔(CH3)3CO.+NO, whose potential energy surface is the lowest in all the reaction paths, makes the probability of measuring (CH3)3CO. radical increase. So NO may be considered as a stabilizing reagent for the (CH3)3CO. radical.  相似文献   

12.

Abstract  

In this paper I summarize our recent investigations (Park and Kim, Phys Chem C 111:14903, 2007; Solid State Ionics 179:1329, 2008) on the origin of the grain-boundary resistance in a doped LaGaO3, a perovskite-structured solid electrolyte. The partial electronic and ionic resistances of the bulk and the grain boundaries, as well as the total resistance, in 1 mol% Sr-doped LaGaO3 were measured separately by means of a dc-polarization method and ac-impedance spectroscopy. Both of the partial resistances at the grain boundaries were greater than the bulk counterparts, indicating that the grain boundaries impede the ionic as well as the electronic transport in this material. The transference number of the partial electronic conductivity at the grain boundary was however greater than that in the bulk. This fact strongly suggests that both electronic and ionic charge carriers deplete at the grain boundaries to form the space-charge zones and that the grain-boundary cores in this material are positively charged. In light of the fact that the effective charge of the oxygen vacancy (+2) is greater than that of the electron hole (+1), the oxygen vacancies deplete more sharply in the space-charge zones compared to the electron holes such that the grain boundaries become more mixed conducting relative to the bulk. These observations verify that the electrical conduction across the grain-boundaries in 1 mol% Sr-doped LaGaO3 is governed by the space charge.  相似文献   

13.
The areas of the fusion and crystallization peaks of Na3FeF6 and of four calibration substances (KCl, NaCl, Na2SO4, and K2SO4) were measured using the DSC mode of a high-temperature calorimeter. Using the measured quantities and known values of the enthalpy of fusion of the calibration substances, the enthalpy of fusion of Na3FeF6 was determined. Its value at the temperature of fusion 1224 K was 70 ± 4 kJ mol−1.  相似文献   

14.
Thermal properties of Co2FeV3O11 have been reinvestigated. It has been proved that this compound does not exhibit polymorphism. It melts incongruently at the temperature of 770±5°C and the phase with lyonsite type structure is the solid product of this melting. Phase relations in the whole subsolidus area of the CoO–V2O5–Fe2O3 system have been determined. The solidus area projection onto the component concentration triangle plane of this system has been constructed using the DTA and XRD methods. 15 subsidiary subsystems can be distinguished in this system.  相似文献   

15.
A new type of oxide–salt composite electrolyte, yttrium doped ceria YDC–Ca3(PO4)2–K3PO4, was developed and demonstrated for its promising use for ammonia synthesis. Using this composite electrolyte, ammonia was synthesized from nitrogen and natural gas at atmospheric pressure in the solid-state proton conducting cell reactor, and the optimal condition for ammonia production was determined . The evolved rate of ammonia is up to 6.95×10−9 mol s−1 cm−2.  相似文献   

16.
2CaO·3B2O3·H2O which has non-linear optical (NLO) property was synthesized under hydrothermal condition and identified by XRD, FTIR and TG as well as by chemical analysis. The molar enthalpy of solution of 2CaO·3B2O3·H2O in HCl·54.572H2O was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in HCl·54.501H2O and of CaO in (HCl+H3BO3) solution, together with the standard molar enthalpies of formation of CaO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(5733.7±5.2) kJ mol−1 of 2CaO·3B2O3·H2O was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

17.
Lanthanum-modified bismuth titanate (Bi3.25La0.75Ti3O12, BLTO) powders were prepared by the complex polymerization method. The structure and morphology of BLTO powders were investigated by X-ray diffraction and scanning electron microscopy. The complexation of citric acid with the metallic cations was detected by Fourier transformed infrared (FT-IR). The thermal analyses of obtained gels were investigated by differential thermal gravimetric (DTG). The pure and normally stoichiometric phase of BLTO powders could be obtained at relatively low temperature of 550–700 °C even if the bismuth content is not excess in the starting precursors, while the secondary phase could be detected at lower and higher calcination temperatures. The shape of the BLTO grains is similarly to platelet in Bi-layer structure and stoichiometry BLTO was detected by the analysis of energy dispersive spectrometry.  相似文献   

18.
This investigation examines the magnetorheological (MR) characteristics of Fe3O4 aqueous suspensions. Magnetite particles (Fe3O4) were synthesized using a colloidal process and their sizes were determined to be normally distributed with an average of 10 nm by TEM. Experimental results reveal that the MR effect increases with the magnetic field and suspension concentration. The yield stress increases by up to two orders of magnitude when the sample is subjected to a magnetic field of 146 Oe/mm. In comparison with other published results, concerning a concentration of approximately 10–15% v/v, this study demonstrates that the same increase can be obtained with a concentration of nano-scale particles as low as 0.04% by volume. The viscosity was increased by an order of magnitude while the shear rate remained low; however, the increase decayed rapidly as the shear rate was raised. Finally, the MR effect caused by DC outperformed that caused by AC at the same current.  相似文献   

19.
The Cu-B-Se (B = In, As, Sb, Bi) systems are studied by measurement of EMF for concentration circuits vs. a copper electrode in the temperature range of 300–430 K. A solid superionic Cu4RbCl3I2 conductor is used as an electrolyte. Diagrams of solid-phase equilibriums in the studied systems are constructed. Partial molar functions of alloyed copper are calculated on the basis of the equations of the temperature dependences of EMF. Potential-forming reactions corresponding to the measured EMF values are determined on the basis of the phase diagrams and standard thermodynamic formation functions and standard entropies of ternary compounds are calculated.  相似文献   

20.
The effects of H2 and H2 + O2 gas mixtures of varying composition on the state of the surface of the Pt/MoO3 model catalyst prepared by vacuum deposition of platinum on oxidized molybdenum foil were investigated by X-ray photoelectron spectroscopy (XPS) at room temperature and a pressure of 5–150 Torr. For samples with a large Pt/Mo ratio, the XP spectrum of large platinum particles showed that the effect of hydrogen-containing mixtures on the catalyst was accompanied by the reduction of molybdenum oxide. This effect results from the activation of molecular hydrogen due to the dissociation on platinum particles and subsequent spill-over of hydrogen atoms on the support. The effect was not observed at low platinum contents in the model catalyst (i.e., for small Pt particles). It is assumed for the catalyst that the loss of its hydrogen-activating ability is a consequence of the formation of platinum hydride. Possible participation of platinum hydride as intermediate in hydrogen oxidation to H2O2 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号