首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this work we present results from density functional theory (DFT) cluster studies to determine polarization-dependent near edge X-ray absorption fine structure (NEXAFS) spectra of the vanadyl termination of the V2O3(0 0 0 1) surface. The oxygen K edge spectra are calculated for the relaxed surface geometry where geometric parameters are taken from recent periodic DFT work. A detailed analysis of energetic peak positions, relative intensities, and final state orbitals allows a deep understanding of the complex angular dependence of the calculated spectra on the basis of the local binding environment of differently coordinated oxygen species. Further, our theoretical analysis can assign and explain various spectral details in the experimental NEXAFS data, in particular, those related to vanadyl oxygen. This allows us to support the experimentally suggested vanadyl surface termination.  相似文献   

3.
Methyl mercaptoacetate (MA) on Cu(1 1 1) surface was investigated using synchrotron radiation-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. MA adsorbs on the surface via thiolate formation and weak interaction of the carbonyl group with the surface. Two different adsorption states previously reported for methanethiolate and ethanethiolate were confirmed, besides atomic sulfur. NEXAFS measurements support gauche-type conformation of MA whose skeleton lies on the surface.  相似文献   

4.
X-ray absorption spectroscopy (XAS) and scanning tunneling microscopy (STM) have been used to study the absorption of monolayers of the pyridinecarboxylic acid monomers (isonicotinic acid, nicotinic acid, and picolinic acid) and benzoic acid on a rutile TiO2(1 1 0) surface. We find that the pyridine and phenyl rings are oriented with their planes largely perpendicular to the surface. The azimuthal orientations are strongly influenced by adsorbate-adsorbate interactions, which in each case leads to at least two different molecular species. In order to reach this conclusion a detailed strategy has been developed for the interpretation of angle-dependent XAS data, which does not rely on any curve fitting procedures.  相似文献   

5.
Model Pt-ceria catalysts have been prepared by the evaporation of Pt onto ceria (CeO2) films grown on Si(1 1 1) substrates. Photoelectron spectroscopy (XPS, UPS) data are used to characterise the surfaces and their adsorption characteristics, and CO oxidation has been used as a probe reaction to test the activity of the model catalysts.Pure ceria is catalytically-inactive under the test conditions employed, whereas the model Pt/ceria catalysts demonstrate high activity for CO oxidation. The model catalysts also reproduce many of the characteristics of their high-surface area analogues, including the possession of a characteristic light-off temperature, hysteresis in activity as a function of temperature and a negative-order dependence on the CO partial pressure.Many aspects of the behaviour of these catalysts are shown to be a direct result of the strong adsorption of CO. The sensitivity of the dispersed Pt towards oxidation is also experimentally-demonstrated and the importance of this phenomenon is discussed.  相似文献   

6.
The redox behaviour of a CuO-CeO2/Al2O3 catalyst is studied under propane reduction and re-oxidation. The evolution of the local Cu and Ce structure is studied with in-situ transmission X-ray absorption spectroscopy (XAS) at the Cu K and Ce L3 absorption edges.CuO and CeO2 structures are present in the catalyst as such. No structural effect on the local Cu structure is observed upon heating in He up to 873 K or after pre-oxidation at 423 K.Exposure to propane at reaction temperature (600-763 K) fully reduces the Cu2+ cations towards metallic Cu0. Quick EXAFS spectra taken during reduction show a small amount of intermediate Cu1+ species. Parallel to the CuO reduction, CeO2 is also reduced in the same temperature range. About 25% of the Ce4+ reduces rapidly to Ce3+ in the 610-640 K temperature interval, while beyond 640 K a further slower reduction of Ce4+ to Ce3+ occurs. At 763 K, Ce reduction is still incomplete with 32% of Ce3+.Re-oxidation of Cu and Ce is fast and brings back the original oxides.The propane reduction of the CuO-CeO2/Al2O3 catalyst involves both CuO and CeO2 reduction at similar temperatures, which is ascribed to an interaction between the two compounds.  相似文献   

7.
The effect of the irradiation with Al Kα X-rays during an XPS measurement upon the surface vanadium oxidation state of a fresh in vacuum cleaved V2O5(0 0 1) crystal was examined. Afterwards, the surface reduction of the V2O5(0 0 1) surface under Ar+ bombardment was studied. The degree of reduction of the vanadium oxide was determined by means of a combined analysis of the O1s and V2p photoelectron lines. Asymmetric line shapes were needed to fit the V3+2p photolines, due to the metallic character of V2O3 at ambient temperature. Under Ar+ bombardment, the V2O5(0 0 1) crystal surface reduces rather fast towards the V2O3 stoichiometry, after which a much slower reduction of the vanadium oxide occurs.  相似文献   

8.
We have used the perturbed angular correlation (PAC) method and extended X-ray absorption fine structure spectroscopy (EXAFS), along with microscopic methods to investigate the implantation induced disorder and characterize the ion-induced amorphisation of elemental and compound semiconductors.  相似文献   

9.
A. Tsami  M. Bowker 《Surface science》2006,600(17):3403-3418
The growth of barium oxide on a Cu(1 1 1) substrate, formed by the deposition of barium and its subsequent oxidation, yields stable BaO films which expose predominantly the BaO(1 0 0) surface. The interaction of the oxide films with common components of motor-vehicle exhaust gases (CO2, H2O, NOx) has been studied using surface analytical techniques, including X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD) and reflection IR spectroscopy (RAIRS). The spectroscopic identification of Ba(OH)2, BaCO3 and Ba(NO2)2 phases is discussed, and the relative stabilities and decomposition mechanisms of these materials when supported on Cu(1 1 1) is revealed by a combination of TPD and XPS. BaO is shown to be resistant to reaction with pure NO and NO/O2 mixtures, but exposure to NO2 leads to the rapid formation of barium nitrite. The formation of the nitrite is proposed to be the first-step in the production of barium nitrate, which has previously been shown to be the main phase involved in NOx storage and reduction (NSR) catalysis.  相似文献   

10.
The effect of magnesium oxide (MgO) surface conditions on in-plane grain orientation and critical current density of epitaxial YBa2Cu3O7 (YBCO) films was systematically investigated. The MgO substrates were either “as received” or stored for some time, cleaned using different methods and lithographically prepared for our step-edge junction devices. The YBCO films were grown via reactive thermal co-evaporation by Theva, GmbH. The surface characterisation of MgO substrates was studied using X-ray photoelectron spectroscopy (XPS). The in-plane grain orientation of the YBCO films was studied by means of X-ray diffraction (XRD) φ-scan and the critical current density was measured for the XRD scanned samples. The surface condition of the MgO substrates was found to have a strong influence on the in-plane grain orientation and the critical current density of the YBCO films. The MgO substrates with a degraded or contaminated surface gave rise to 45° grain misorientation in YBCO films and reduced the critical current density. A final process step using a low energy Ar ion beam etching (IBE) of the MgO substrates prior to the YBCO film deposition was found effective in removing the in-plane grain misorientation and promoting the growth of perfectly aligned c-axis YBCO films.  相似文献   

11.
X‐ray absorption and scattering spectroscopies involving the 3d transition‐metal K‐ and L‐edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M‐edges, which are below 100 eV. Synchrotron‐based X‐ray sources can have higher energy resolution at M‐edges. M‐edge X‐ray absorption spectroscopy (XAS) and resonant inelastic X‐ray scattering (RIXS) could therefore provide complementary information to K‐ and L‐edge spectroscopies. In this study, M2,3‐edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M2,3‐edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different dd transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M‐edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high‐sensitivity and high‐resolution superconducting tunnel junction X‐ray detectors below 100 eV is also illustrated and discussed.  相似文献   

12.
Mixed crystals Rb3(HSO4)2.5(H2AsO4)0.5 have been prepared by slow evaporation from aqueous solution at room temperature. The crystals were characterized by X-ray single analysis, which revealed that Rb3(HSO4)2.5(H2AsO4)0.5 crystallizes in the space group P with lattice parameters: a = 7.471(3) Å; b = 7.636(1) Å; c = 12.193(2) Å; α = 71.91(1)°; β = 73.04(6)° and γ = 88.77(2)°. In this structure, the ordered S(1)O4 and the disordered S(3)/AsO4 tetrahedra are connected by O–H..O hydrogen bonds, to a zigzag chains running in the b-direction. These chains are, in turn, bonded to one another by disordered hydrogen bridges O–H..H–O, to give a planar structure, with hydrogen-bonded sheets, laying parallel to (1 0 0). Each disordered tetrahedron is linked to a tetrahedron neighbouring S(2)O4 by ordered hydrogen bonds. Broader peaks in IR spectrum of the title material support the assumption of disordered structure. Thermal analysis of the superprotonic transition in Rb3(HSO4)2.5(H2AsO4)0.5 showed that the transformation to the high-temperature phase occurs by one-step process at 404 K. Thermal decomposition of this compound takes place at much higher temperatures, with an onset of approximately 473 K.  相似文献   

13.
The present work examines the interactions of propanoic acid, acrylic acid, acrolein and methylmethacrylate (MMA) with Pt(111) at 95 K to identify the nature of the interactions on this surface. The investigations are carried out by XPS, UPS and NEXAFS on monolayer and multilayer. Theoretical molecular orbital calculations are firstly performed to determine the nature of the bonding and antibonding orbitals of these molecules. The NEXAFS results show that the condensed multilayers of acrylic acid and acrolein are almost oriented parallel to the surface when propanoic acid and MMA are randomly oriented. The monolayer formed at 95 K for all these molecules are also oriented flat on Pt(111). However two different interaction processes are observed depending on the chemical structure of the compound: acrolein and propanoic acid are physisorbed when MMA and acrylic acid are in strong interaction with the metal but with an uncertainty on the chemisorption mode between a π-bonded state or a “di-σ like” state.  相似文献   

14.
C. Sternemann 《高压研究》2016,36(3):275-292
ABSTRACT

X-ray Raman scattering spectroscopy is an emerging method in the study of low and intermediate Z elements' core-electron excitations at extreme conditions in order to reveal information on local structure and electronic state of matter in situ. We discuss the capabilities of this method to address questions in Earth materials' science and demonstrate its sensitivity to detect changes in the oxidation state, electronic structure, coordination, and spin state. Examples are presented for the study of the oxygen K-, silicon L- and iron M-edges. We assess the application of both temperature and pressure in such investigations exploiting diamond anvil cells in combination with resistive or laser heating which is required to achieve realistic conditions of the Earth's crust, mantle, and core.  相似文献   

15.
Fundamental understandings of surface chemistry and catalysis of solid catalysts are of great importance for the developments of efficient catalysts and corresponding catalytic processes, but have been remaining as a challenge due to the complex nature of heterogeneous catalysis. Model catalysts approach based on catalytic materials with uniform and well-defined surface structures is an effective strategy. Single crystals-based model catalysts have been successfully used for surface chemistry studies of solid catalysts, but encounter the so-called “materials gap” and “pressure gap” when applied for catalysis studies of solid catalysts. Recently catalytic nanocrystals with uniform and well-defined surface structures have emerged as a novel type of model catalysts whose surface chemistry and catalysis can be studied under the same operational reaction condition as working powder catalysts, and they are recognized as a novel type of model catalysts that can bridge the “materials gap” and “pressure gap” between single crystals-based model catalysts and powder catalysts. Herein we review recent progress of surface chemistry and catalysis of important oxide catalysts including CeO2, TiO2 and Cu2O acquired by model catalysts from single crystals to nanocrystals with an aim at summarizing the commonalities and discussing the differences among model catalysts with complexities at different levels. Firstly, the complex nature of surface chemistry and catalysis of solid catalysts is briefly introduced. In the following sections, the model catalysts approach is described and surface chemistry and catalysis of CeO2, TiO2 and Cu2O single crystal and nanocrystal model catalysts are reviewed. Finally, concluding remarks and future prospects are given on a comprehensive approach of model catalysts from single crystals to nanocrystals for the investigations of surface chemistry and catalysis of powder catalysts approaching the working conditions as closely as possible.  相似文献   

16.
Adsorption of NO on a Pt(1 1 1) surface pre-covered with a p(2 × 2) atomic oxygen layer has been studied in situ by high-resolution X-ray photoelectron spectroscopy and temperature-programmed XPS using third-generation synchrotron radiation at BESSY II, Berlin, combined with molecular beam techniques and ex situ by low energy electron diffraction and temperature-programmed desorption. O 1s XP spectra reveal that an ordered p(2 × 2)-O layer dramatically changes the adsorption behavior of NO as compared to the clean surface. The atomic oxygen occupies fcc hollow sites, and therefore blocks NO adsorption on these sites, which are energetically preferred on clean Pt(1 1 1). As a consequence, NO populates on-top sites at low coverage. At 110 K for higher coverages, NO can additionally adsorb on hcp hollow sites, thereby inducing a shift of the O 1s binding energy of atomic oxygen towards lower energies by about 0.25 eV. The bond strength of the hcp hollow NO species to the substrate is weakened by the presence of atomic oxygen. A sharp p(2 × 2) LEED pattern is observed for NO adsorption on the oxygen pre-covered surface, up to saturation coverage. The total saturation coverage of NO on Pt(1 1 1) pre-covered with varying amounts of oxygen (below 0.25 ML) decreases linearly with the coverage of oxygen. The initial sticking coefficient of NO is reduced from 0.96 on clean Pt(1 1 1) to 0.88 on a p(2 × 2) oxygen pre-covered surface.  相似文献   

17.
The surface chemistry of NO and NO2 on clean and oxygen-precovered Pt(1 1 0)-(1 × 2) surfaces were investigated by means of high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). At room temperature, NO molecularly adsorbs on Pt(1 1 0), forming linear NO(a) and bridged NO(a). Coverage-dependent repulsive interactions within NO(a) drive the reversible transformation between linear and bridged NO(a). Some NO(a) decomposes upon heating, producing both N2 and N2O. For NO adsorption on the oxygen-precovered surface, repulsive interactions exist between precovered oxygen adatoms and NO(a), resulting in more NO(a) desorbing from the surface in the form of linear NO(a). Bridged NO(a) experiences stronger repulsive interactions with precovered oxygen than linear NO(a). The desorption activation energy of bridged NO(a) from oxygen-precovered Pt(1 1 0) is lower than that from clean Pt(1 1 0), but the desorption activation energy of linear NO(a) is not affected by the precovered oxygen. NO2 decomposes on Pt(1 1 0)-(1 × 2) surface at room temperature. The resulted NO(a) (both linear NO(a) and bridged NO(a)) and O(a) repulsively interact each other. Comparing with NO/Pt(1 1 0), more NO(a) desorbs from NO2/Pt(1 1 0) as linear NO(a), and both linear NO(a) and bridged NO(a) exhibit lower desorption activation energies. The reaction pathways of NO(a) on Pt(1 1 0), desorption or decomposition, are affected by their repulsive interactions with coexisting oxygen adatoms.  相似文献   

18.
The rutile (1 1 0)-aqueous solution interface structure was measured in deionized water (DIW) and 1 molal (m) RbCl + RbOH solution (pH 12) at 25 °C with the X-ray crystal truncation rod method. The rutile surface in both solutions consists of a stoichiometric (1 × 1) surface unit mesh with the surface terminated by bridging oxygen (BO) and terminal oxygen (TO) sites, with a mixture of water molecules and hydroxyl groups (OH) occupying the TO sites. An additional hydration layer is observed above the TO site, with three distinct water adsorption sites each having well-defined vertical and lateral locations. Rb+ specifically adsorbs at the tetradentate site between the TO and BO sites, replacing one of the adsorbed water molecules at the interface. There is no further ordered water structure observed above the hydration layer. Structural displacements of atoms at the oxide surface are sensitive to the solution composition. Ti atom displacements from their bulk lattice positions, as large as 0.05 Å at the rutile (1 1 0)-DIW interface, decay in magnitude into the crystal with significant relaxations that are observable down to the fourth Ti-layer below the surface. A systematic outward shift was observed for Ti atom locations below the BO rows, while a systematic inward displacement was found for Ti atoms below the TO rows. The Ti displacements were mostly reduced in contact with the RbCl solution at pH 12, with no statistically significant relaxations in the fourth layer Ti atoms. The distance between the surface 5-fold Ti atoms and the oxygen atoms of the TO site is 2.13 ± 0.03 Å in DIW and 2.05 ± 0.03 Å in the Rb+ solution, suggesting molecular adsorption of water at the TO site to the rutile (1 1 0) surface in DIW, while at pH 12, adsorption at the TO site is primarily in the form of an adsorbed hydroxyl group.  相似文献   

19.
Interactions between oxygen and Pd-surfaces have important implications, especially towards oxidation reactions, and influence of subsurface oxygen to oxidation reactions is the focus of the present study. In our efforts to understand the above aspects, CO oxidation reactions have been carried out with mixed molecular beam (MB), consisting CO and O2, on Pd(1 1 1) surfaces under a wide variety of conditions (T = 400-900 K, CO:O2 = 7:1 to 1:10). A new aspect of the above reaction observed in the transient kinetics regime is the evidence for oxygen diffusion into Pd subsurface layers, and its significant influence towards CO oxidation at high temperatures (≥600 K). Interesting information derived from the above studies is the necessity to fill up the subsurface layers with oxygen atoms to a threshold coverage (θO-sub), above which the reactive CO adsorption occurs on the surface and simultaneous CO2 production begins. There is also a significant time delay (Γ) observed between the onset of oxygen adsorption and CO adsorption (and CO2 production). Above studies suggest an electronic decoupling of oxygen covered surface and subsurface layers, which is slightly oxidized, from the metallic bulk, which induces CO adsorption at high temperatures and simultaneous oxidation to CO2.  相似文献   

20.
Zhipeng Chang 《Surface science》2007,601(9):2005-2011
Methanethiol adsorbed on Ru(0 0 0 1)-p(2 × 2)O has been studied by TPD and XPS. The dissociation of methanethiol to methylthiolate and hydrogen at 90 K is evidenced by the observation of hydroxyl and water. The saturation coverage of methylthiolate is ∼0.15 ML, measured by both XPS and TPD. A detailed analysis suggests that only the hcp-hollow sites have been occupied. Upon annealing the surface, water and hydroxyl desorb from the surface at ∼210 K. Methylthiolate decomposes to methyl radical and atomic sulphur via C-S cleavage between 350 and 450 K. Some methyl radicals (0.05 ML) have been transferred to Ru atoms before they decompose to carbon and hydrogen. The rest of methyl radicals desorb as gaseous phase. No evidence for the transfer of methyl radical to surface oxygen has been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号