共查询到3条相似文献,搜索用时 62 毫秒
1.
由于矿产地质信息的复杂性和不确定性,难以建立精确的数学模型来确定矿产资源的分布状况.非线性分析建模技术,如人工神经网络(Artificial Neural Network,ANN)、支持向量机(Support Vector Machine,SVM)等,给矿产预测工作提供了新的途径.这类方法在处理数据时可以避免数据分析和建模的困难,即不须理解各种成矿因子与矿床(点)之间的相互关系,只须选择已知的矿床(点)和非矿产(点),进行"黑箱"学习.虽然经过合理的训练,这类方法能够得到较高的预测精度,但由于其分类过程的非线性特性,难以获得容易理解的分类规则,提供成矿因子的知识.本文采用基于SVM的迭代特征消去(Recursive Feature Elimination,RFE)技术(SVM-RFE),即在SVM模型的训练过程中,采用RFE特征选择方法,从所有输入的成矿因子中选择出对矿床(点)能正确预测的重要因子,以提供对输入模型的成矿因子的客观评价.通过对滇东南地区金矿预测的实践表明,采用SVM-RFE技术从原始10类成矿因子中自动选择6类进行预测的精度从68.42%提高到94.74%,并且得到该区域进行矿产预测的成矿因子重要性依次是:Au异常、As异常、侵入岩、下三叠统与中三叠统之间的平行不整合面、上二叠统与三叠系的平行不整合面、断裂交汇点密度、石炭系和下二叠统间的平行不整合面、中上泥盆统和石炭系间的平行不整合面、Sb异常和Hg异常,从中选取前6类成矿因子进行SVM训练得到的预测精度最高.这一结论可为在该区域进行矿产预测的资料选取,以及对成矿因子的理解提供支持. 相似文献
2.
神经网络是工业尾气检测系统的一个重要组成部分. 为提高神经网络的预测精度和收敛速度, 建立k-means-RBF集成神经网络模型. 首先, 通过选取不同的径向基函数神经网络参数, 得到一组RBF神经网络; 然后, 利用k-means算法对生成的RBF神经网络进行聚类, 并筛选出各类中精度较高的神经网络; 最后, 通过简单平均法对筛选出的神经网络进行集成, 得到高性能的k-means-RBF集成神经网络模型. 为验证模型有效性, 搭建基于k-means-RBF集成神经网络模型的工业尾气检测系统进行验证. 结果表明, 与粒子群算法优化后的Back Propagation (PSO-BP)神经网络模型相比, k-means-RBF集成神经网络模型的平均预测精度提高78.27%, 收敛时间节省99.65% 相似文献
3.
模糊神经网络在复合地基沉降量预测中的应用 总被引:1,自引:0,他引:1
复合地基后期沉降变形对于建筑物设计及安全具有重要意义,针对通过长期沉降观测以得到复合地基的最终沉降需要耗费较多资源的问题,提出了一种基于模糊神经网络的预测方法.该方法考虑沉降变化过程有较大的随机性和模糊性,直接将样本数据进行模糊化,所得的模糊数代表了样本点集与控制点集中各分量之间的相关度,并依此建立模糊BP神经网络进行学习和估算.实验结果表明了该方法对沉降进行预测是可行与有效的,且在相对误差的有效控制方面优于BP网络方法与灰色方法. 相似文献