首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The Frank polyphase sequence has been applied to pulsed EPR of triarylmethyl radicals at 25 6 MHz (9.1 mT magnetic field), using 256 phase pulses. In EPR, as in NMR, use of a Frank sequence of phase steps permits pulsed FID signal acquisition with very low power microwave/RF pulses (ca. 1.5 mW in the application reported here) relative to standard pulsed EPR. A 0.2 mM aqueous solution of a triarylmethyl radical was studied using a 16 mm diameter cross-loop resonator to isolate the EPR signal detection system from the incident pulses.  相似文献   

2.
In pulsed EPR, spectral contributions from several species in one sample can be separated based on different EPR transition probabilities. This is usually done by monitoring the Rabi nutations in a 2D experiment. By using long pulses, the FID and echo shapes of species with different transition probabilities differ significantly, including temporal shifts of the observed echo signals in a two-pulse ESE experiment. These shifts can be used to disentangle spectral components in a 1D field-swept ESE experiment by choosing an appropriate detection time. This approach is demonstrated by experiments on a sample containing Mn(2+) and Cr(3+) centers as well as on an exchange-coupled Mn(III)/Mn(IV) system with Mn(2+) contaminations.  相似文献   

3.
Direct detection of free induction decays and electron spin echoes, and the recording of echo-detected EPR spectra and electron spin echo envelope modulation patterns at a microwave frequency of 2.5 GHz is demonstrated. This corresponds to the measurement of the transverse magnetization in the laboratory frame, rather than in the rotating frame as usually done by down-converting the signal (homodyne detection). An oscilloscope with a 6-GHz analog bandwidth, a sampling rate of 20 GigaSamples per second, and a trigger frequency of 5 GHz for the edge trigger and 750 MHz for the advanced trigger, is used in these experiments. For signal averaging a 3-GHz microwave clock divider has been developed to synchronize the oscilloscope with the frequency of the EPR signal. Moreover, direct detection of continuous wave EPR signals at 2.5 GHz is described.  相似文献   

4.
活性氧和氮自由基(ROS/RNS)在一系列的人类疾病中扮演着双重角色. 它们可以是氧化剂, 诱导氧化状态, 导致组织损伤. 它们又可以是信号传导因子, 诱发保护性反应, 使得被调节的组织器官经受得起更强的损伤. 鉴于它们在生物医学中的重要作用, 检测它们产生和分布的技术的研究因而变得必要和紧迫. 在体电子自旋共振(EPR)波谱和成像技术渐已被应用于活体生物体系中用以表针和显像ROS/RNS. EPR 波谱特性(包括线宽、强度和寿命)以及空间分布信息已为动物甚至人体病理模型中氧化还原状态和氧分布的检测提供不可缺少的依据. 该文将简单描述和讨论一系列在体EPR 波谱和成像技术在器官和组织中的应用, 其中包括活体组织氧化还原状态, 活体组织氧分布和时间演化, 自由基空间以及谱-空间成像等.  相似文献   

5.
Electron paramagnetic resonance (EPR)-based oximetry is capable of quantifying oxygen content in samples. However, for a heterogeneous environment with multiple pO2 values, peak-to-peak linewidth of the composite EPR lineshape does not provide a reliable estimate of the overall pO2 in the sample. The estimate, depending on the heterogeneity, can be severely biased towards narrow components. To address this issue, we suggest a postprocessing method to recover the linewidth histogram which can be used in estimating meaningful parameters, such as the mean and median pO2 values. This information, although not as comprehensive as obtained by EPR spectral-spatial imaging, goes beyond what can be generally achieved with conventional EPR spectroscopy. Substantially shorter acquisition times, in comparison to EPR imaging, may prompt its use in clinically relevant models. For validation, simulation and EPR experiment data are presented.  相似文献   

6.
A novel EPR stopped-flow accessory is described which allows time-dependent cw-EPR measurements of rate constants of reactions involving paramagnetic species after rapid mixing of two liquid reagents. The EPR stopped-flow design represents a state-of-the-art, computer controlled fluid driving system, a miniresonant EPR structure with an integrated small ball mixer, and a stopping valve. The X-band EPR detection system is an improved version of that reported by Sienkiewicz et al. [Rev. Sci. Instr. 65 (1994) 68], and utilizes a resonator with two stacked ceramic dielectric rings separated by a variable spacer. The resonator with the mode TE(H)011 is tailored particularly for conditions of fast flowing and rapidly stopped aqueous solutions, and for a high time resolution. The short distance between the ball mixer and the small EPR active volume (1.8 microl) yields a measured dead time of 330 micros. A compact assembly of all parts results in minimization of disturbing microphonics. The computer controlled driving system from BioLogic with two independent stepping motors was optimized for EPR stopped-flow with a hard-stop valve. Performance tests on the EPR spectrometer ESP 300E from BRUKER using redox reactions of nitroxide radicals revealed the EPR stopped-flow accessory as an advanced, versatile, and reliable instrument with high reproducibility.  相似文献   

7.
We describe the first free-electron laser (FEL)-based pulsed electron paramagnetic resonance (EPR) system designed to study spin dynamics and structure changes of proteins in aqueous solution with nano-second of time resolution. This novel approach opens up the possibility for high-power sub-THz and THz pulsed EPR spectroscopy.  相似文献   

8.
《Current Applied Physics》2014,14(5):798-804
The article presents results of a study of TEMPO-labeled polymer coated superparamagnetic iron(II,III) oxide nanoparticles using both Electron Paramagnetic Resonance (EPR) spectroscopy and Electron Paramagnetic Resonance imaging technique (EPRI). The X-band (9.4 GHz) EPR spectroscopy was used to investigate the behavior of TEMPO-labeled polymer coated magnetite nanoparticles in different conditions (temperature and orientation in magnetic field). The broad line, which comes from the core of Fe3O4 nanoparticles, shows anisotropy. This signal broadens with decreasing temperature, its intensity increases with increasing temperature and the g factor decreases with increasing temperature. The shape of the signal from nitroxide radical strongly depends on temperature. When temperature is higher than 200 K, a narrow triplet appears, but when it is lower than 200 K the signal consists of broad asymmetric lines. Analysis of the signal allowed characterization of the motion of the spin label attached to nanoparticles. Values of anisotropy parameter ɛ and rotational correlation time τc were calculated for TEMPO in the fast rotation regime.The ability of TEMPO-labeled PEG coated magnetite nanoparticles to diffuse within the hydrogel medium was also investigated. The EPR imaging of nanoparticles diffusion in hydrogel was made at room temperature using an EPR L-band (1 GHz) spectrometer. EPRI has been proved effective for evaluation of changes in the spatial distribution of nanoparticles in the sample.  相似文献   

9.
本文设计和研制了一款新型X波段多功能电子顺磁共振(electron paramagnetic resonance,EPR)谱仪,并为其开发一款新的控制和读出系统(control and readout system,CRS)来操控微波脉冲的产生和信号的采集,提高了系统的集成度和可扩展性. 该谱仪可实现常规的连续波EPR(continuous-wave EPR,cw-EPR)、脉冲EPR(pulsed EPR)和瞬态EPR(transient EPR,trEPR)实验,并装配了6~300 K的无液氦变温装置,以及兼具平行模式与垂直模式的新型双模连续波谐振腔和用于脉冲EPR及trEPR的介质腔. 针对新型EPR谱仪和新谐振腔,本文利用双模连续波、脉冲和瞬态三个不同方式的EPR实验,对其功能进行了验证.  相似文献   

10.
We report a difference in the spectral lineshapes of continuous-wave (CW) electron paramagnetic resonance (EPR) spectroscopy between field and frequency modulation. This finding addresses the long-standing question of the effect of modulation in EPR absorption. We compared the first-derivative EPR spectra at 1.1 GHz for lithium phthalocyanine crystals, which have a single narrow linewidth in the EPR absorption spectrum, using field and frequency modulation. The experimental findings suggest that unpaired electrons have different behaviors under perturbation due to field and frequency modulation.  相似文献   

11.
Magnetic field modulation in CW electron paramagnetic resonance (EPR) is used for signal detection. However, it can also distort signal lineshape. In experiments where the linewidth information is of particular importance, small modulation amplitude is usually used to limit the lineshape distortion. The use of small modulation amplitude, however, results in low signal-to-noise ratio and therefore affects the precision of linewidth measurements. Recently, a new spectral simulation model has been developed enabling accurate fitting of modulation-broadened EPR spectra in liquids. Since the use of large modulation amplitude (over-modulation) can significantly enhance the EPR signal, the precision of linewidth measurements is therefore greatly improved. We investigated the over-modulation technique in EPR oximetry experiments using the oxygen-sensing probe lithium octa-n-butoxy-substitued naphthalocyanine (LiNc-BuO). Modulation amplitudes 2-18 times the intrinsic linewidth of the probe were applied to increase the spectral signal-to-noise ratio. The intrinsic linewidth of the probe at different oxygen concentrations was accurately extracted through curve fitting from the enhanced spectra. Thus, we demonstrated that the over-modulation model is also applicable to particulate oxygen-sensing probes such as LiNc-BuO and that the lineshape broadening induced by oxygen is separable from that induced by over-modulation. Therefore, the over-modulation technique can be used to enhance sensitivity and improve linewidth measurements for EPR oximetry with particulate oxygen-sensing probes with Lorentzian lineshape. It should be particularly useful for in vivo oxygen measurements, in which direct linewidth measurements may not be feasible due to inadequate signal-to-noise ratio.  相似文献   

12.
EPR spectra of 3-carboxy-proxyl (CP) in dry biological tissues exhibited a temperature-dependent change in the principal value A'(zz) of the hyperfine interaction tensor. The A'(zz) value changed sharply at a particular temperature that was dependent on water content. At elevated water contents, the break occurred at lower temperatures and appeared to be associated with the melting of the cytoplasmic glassy state. To investigate the reason for the change in A'(zz), we employed echo-detected EPR (ED EPR) spectroscopy. The shape of the ED EPR spectrum revealed the presence of librational motion of the spin probe, a motion typically present in glassy materials. The similarities in temperature dependency of A'(zz) and librational motion of CP in pea seed axes indicated that the change in A'(zz) arose from librational motion. ED EPR measurements of CP as a function of water content in Typha latifolia pollen showed that librational motion decreased with decreasing water contents until a plateau or minimum was reached. ED EPR spectroscopy is a valuable technique for characterizing the relation between molecular motion and storage kinetics of dry seed and pollen.  相似文献   

13.
14.
Rapid field scan on the order of T/s using high frequency sinusoidal or triangular sweep fields superimposed on the main Zeeman field, was used for direct detection of signals without low-frequency field modulation. Simultaneous application of space-encoding rotating field gradients have been employed to perform fast CW EPR imaging using direct detection that could, in principle, approach the speed of pulsed FT EPR imaging. The method takes advantage of the well-known rapid-scan strategy in CW NMR and EPR that allows arbitrarily fast field sweep and the simultaneous application of spinning gradients that allows fast spatial encoding. This leads to fast functional EPR imaging and, depending on the spin concentration, spectrometer sensitivity and detection band width, can provide improved temporal resolution that is important to interrogate dynamics of spin perfusion, pharmacokinetics, spectral spatial imaging, dynamic oxymetry, etc.  相似文献   

15.
A simple effective method for calculation of EPR spectra from a single truncated dynamical trajectory of spin probe orientations is reported. It is shown that an accurate simulation can be achieved from the small initial fraction of a dynamical trajectory until the point when the autocorrelation function of re-orientational motion of spin label has relaxed. This substantially reduces the amount of time for spectra simulation compared to previous approaches, which require multiple full length trajectories (normally of several microseconds) to achieve the desired resolution of EPR spectra. Our method is applicable to trajectories generated from both Brownian dynamics and molecular dynamics (MD) calculations. Simulations of EPR spectra from Brownian dynamical trajectories under a variety of motional conditions including bi-modal dynamics with different hopping rates between the modes are compared to those performed by conventional method. Since the relatively short timescales of spin label motions are realistically accessible by modern MD computational methods, our approach, for the first time, opens the prospect of the simulation of EPR spectra entirely from MD trajectories of real proteins structures.  相似文献   

16.
The aim of the present study was to evaluate the usefulness of electron paramagnetic resonance (EPR) spectroscopy and imaging in assessing the phagocytic activity of the liver after administration of India ink. We conducted experiments on livers from control rodents and from rodents in which the Kupffer cell population had been depleted by pretreatment with gadolinium chloride. The EPR signal intensity recorded in liver homogenates was about two times lower in GdCl(3) treated rats than in control rats. EPR imaging carried out on precision-cut liver slices indicated a good correlation between the depletion of Kupffer cells and the EPR signal intensity.  相似文献   

17.
A novel X-band CW EPR imaging has been developed using magnetic-field-gradient (MFG) spinning to obtain spatial distributions of electron paramagnetic species. Spinning MFG EPR imaging for 65 projection spectra required just 55 s while conventional imaging took 11 min 40 s, that is, the acquisition time for the new system is one order of magnitude shorter than that for conventional EPR imaging. Spinning MFG EPR imaging allows one to measure reconstructed images in an interactive manner where resolution and condition can be changed quickly.  相似文献   

18.
There has been a need for development of microwave resonator designs optimized to provide high sensitivity and high stability for EPR spectroscopy and imaging measurements of in vivo systems. The design and construction of a novel reentrant resonator with transversely oriented electric field (TERR) and rectangular sample opening cross section for EPR spectroscopy and imaging of in vivo biological samples, such as the whole body of mice and rats, is described. This design with its transversely oriented capacitive element enables wide and simple setting of the center frequency by trimming the dimensions of the capacitive plate over the range 100-900 MHz with unloaded Q values of approximately 1100 at 750 MHz, while the mechanical adjustment mechanism allows smooth continuous frequency tuning in the range +/-50 MHz. This orientation of the capacitive element limits the electric field based loss of resonator Q observed with large lossy samples, and it facilitates the use of capacitive coupling. Both microwave performance data and EPR measurements of aqueous samples demonstrate high sensitivity and stability of the design, which make it well suited for in vivo applications.  相似文献   

19.
Time-domain (TD) electron paramagnetic resonance (EPR) imaging at 300MHz for in vivo applications requires resonators with recovery times less than 1 micros after pulsed excitation to reliably capture the rapidly decaying free induction decay (FID). In this study, we tested the suitability of the Litz foil coil resonator (LCR), commonly used in MRI, for in vivo EPR/EPRI applications in the TD mode and compared with parallel coil resonator (PCR). In TD mode, the sensitivity of LCR was lower than that of the PCR. However, in continuous wave (CW) mode, the LCR showed better sensitivity. The RF homogeneity was similar in both the resonators. The axis of the RF magnetic field is transverse to the cylindrical axis of the LCR, making the resonator and the magnet co-axial. Therefore, the loading of animals, and placing of the anesthesia nose cone and temperature monitors was more convenient in the LCR compared to the PCR whose axis is perpendicular to the magnet axis.  相似文献   

20.
A microwave two-pulse sequence with a weak and long 180° first pulse and a hard 90° second pulse is employed to detect nuclear coherences in pulsed EPR. The coherences created by the first pulse are transferred after an evolution periodTinto an observable FID by the second pulse. The free induction is measured at some fixed delay after the second pulse; it is modulated whenTis varied. As the second pulse may be switched on immediately after the first pulse, the nuclear coherences may be detected immediately as they start to freely oscillate, without loss of information within the instrumental dead time. The method is demonstrated for a sample of the radical cation of15N-labeled bacteriochlorophylla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号