首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freeze-drying or lyophilisation is a batch wise industrial process used to remove water from solutions, hence stabilizing the solutes for distribution and storage. The objective of the present work was to outline a batch modelling approach to monitor a freeze-drying process in-line and in real-time using Raman spectroscopy. A 5% (w/v) d-mannitol solution was freeze-dried in this study as model. The monitoring of a freeze-drying process using Raman spectroscopy allows following the product behaviour and some process evolution aspects by detecting the changes of the solutes and solvent occurring during the process. Herewith, real-time solid-state characterization of the final product is also possible.The timely spectroscopic measurements allowed the differentiation between batches operated in normal process conditions and batches having deviations from the normal trajectory. Two strategies were employed to develop batch models: partial least squares (PLS) using the unfolded data and parallel factor analysis (PARAFAC). It was shown that both strategies were able to developed batch models using in-line Raman spectroscopy, allowing to monitor the evolution in real-time of new batches. However, the computational effort required to develop the PLS model and to evaluate new batches using this model is significant lower compared to the PARAFAC model. Moreover, PLS scores in the time mode can be computed for new batches, while using PARAFAC only the batch mode scores can be determined for new batches.  相似文献   

2.
Using near infrared (NIR) and Raman spectroscopy as PAT tools, 3 critical quality attributes of a silicone-based drug reservoir were studied. First, the Active Pharmaceutical Ingredient (API) homogeneity in the reservoir was evaluated using Raman spectroscopy (mapping): the API distribution within the industrial drug reservoirs was found to be homogeneous while API aggregates were detected in laboratory scale samples manufactured with a non optimal mixing process. Second, the crosslinking process of the reservoirs was monitored at different temperatures with NIR spectroscopy. Conformity tests and Principal Component Analysis (PCA) were performed on the collected data to find out the relation between the temperature and the time necessary to reach the crosslinking endpoints. An agreement was found between the conformity test results and the PCA results. Compared to the conformity test method, PCA had the advantage to discriminate the heating effect from the crosslinking effect occurring together during the monitored process. Therefore the 2 approaches were found to be complementary. Third, based on the HPLC reference method, a NIR model able to quantify the API in the drug reservoir was developed and thoroughly validated. Partial Least Squares (PLS) regression on the calibration set was performed to build prediction models of which the ability to quantify accurately was tested with the external validation set. The 1.2% Root Mean Squared Error of Prediction (RMSEP) of the NIR model indicated the global accuracy of the model. The accuracy profile based on tolerance intervals was used to generate a complete validation report. The 95% tolerance interval calculated on the validation results indicated that each future result will have a relative error below ±5% with a probability of at least 95%. In conclusion, 3 critical quality attributes of silicone-based drug reservoirs were quickly and efficiently evaluated by NIR and Raman spectroscopy.  相似文献   

3.
The Food and Drug Administration's (FDA) process analytical technology (PAT) framework has been initiated to encourage drug manufacturers to develop innovative techniques in order to better understand their processes and institute high level quality control which allows action at any point in the manufacturing process. While Raman spectroscopy and chemometrics have been successfully used to predict concentration of conventional metabolites in cell cultures, it is really not the case for active substances. Thus, we propose, for the first time, an in-line and real-time prediction of recombinant antibody titer using an immersion probe link to a spectrometer without the tacking of samples. A good robustness of the method is observed on different culture batches and the contamination risk is drastically reduced which is an important issue in biotechnology manufacturing processes.  相似文献   

4.
The cyclotron production of gallium-68 via the 68Zn(p,n)68Ga nuclear reaction in liquid targets is gaining significant traction in clinics. This work describes (1) the synthesis of new arylamino phosphonates via the Kabachnik–Fields reaction, (2) their use for liquid–liquid extraction of 68Ga from 1 M Zn(NO3)2/0.01 M HNO3 in batch and continuous flow, and (3) the use of Raman spectroscopy as a process analytical technology (PAT) tool for in-line measurement of 68Zn. The highest extraction efficiencies were obtained with the extractants functionalized with trifluoromethyl substituents and ethylene glycol ponytails, which were able to extract up to 90% of gallium-68 in batch and 80% in flow. Only ppm amounts of zinc were co-extracted. The extraction efficiency was a function of pKa and the aqueous solubility of the extractant and showed marked concentration, solvent, and temperature dependence. Raman spectroscopy was found to be a promising PAT tool for the continuous production of gallium-68.  相似文献   

5.
The aim of the present study was to examine the possibilities/advantages of using recently introduced in-line spectroscopic process analyzers (Raman, NIR and plasma emission spectroscopy), within well-designed experiments, for the optimization of a pharmaceutical formulation and its freeze-drying process. The formulation under investigation was a mannitol (crystalline bulking agent)-sucrose (lyo- and cryoprotector) excipient system. The effects of two formulation variables (mannitol/sucrose ratio and amount of NaCl) and three process variables (freezing rate, annealing temperature and secondary drying temperature) upon several critical process and product responses (onset and duration of ice crystallization, onset and duration of mannitol crystallization, duration of primary drying, residual moisture content and amount of mannitol hemi-hydrate in end product) were examined using a design of experiments (DOE) methodology. A 2-level fractional factorial design (25−1 = 16 experiments + 3 center points = 19 experiments) was employed. All experiments were monitored in-line using Raman, NIR and plasma emission spectroscopy, which supply continuous process and product information during freeze-drying. Off-line X-ray powder diffraction analysis and Karl-Fisher titration were performed to determine the morphology and residual moisture content of the end product, respectively.In first instance, the results showed that - besides the previous described findings in De Beer et al., Anal. Chem. 81 (2009) 7639-7649 - Raman and NIR spectroscopy are able to monitor the product behavior throughout the complete annealing step during freeze-drying. The DOE approach allowed predicting the optimum combination of process and formulation parameters leading to the desired responses. Applying a mannitol/sucrose ratio of 4, without adding NaCl and processing the formulation without an annealing step, using a freezing rate of 0.9 °C/min and a secondary drying temperature of 40 °C resulted in efficient freeze-drying supplying end products with a residual moisture content below 2% and a mannitol hemi-hydrate content below 20%. Finally, using Monte Carlo simulations it became possible to determine how varying the factor settings around their optimum still leads to fulfilled response criteria, herewith having an idea about the probability to exceed the acceptable response limits. This multi-dimensional combination and interaction of input variables (factor ranges) leading to acceptable response criteria with an acceptable probability reflects the process design space.  相似文献   

6.
刘伟  何勇  吴斌  蒋轲磊 《分析测试学报》2020,39(10):1239-1246
该文通过采用近红外光谱分析技术对原料药(API)的浓度调节过程进行实时监控,介绍了在良好生产规范条件下过程分析技术(PAT)的实施过程。利用偏最小二乘算法开发出两个校正模型分别用以监控原料药和水分含量,并通过模型校正均方根误差(RMSEC)、交叉检验均方根误差(RMSECV)和预测均方根误差(RMSEP)以及对应的决定系数(R~2)来评估模型的性能。为保证模型性能,按照分析方法验证要求对模型的线性和范围、准确性、精密度(重复性)、专属性以及稳健性指标进行验证。最后通过系统性能测试确认检测系统满足商业化运行的要求。结果显示,采用过程分析技术控制浓度调节过程,可以大幅度缩短浓度调节时间,节约蒸汽能耗和检测费用,减少生产过程中的偏差,提升产品工艺水平和批次间一致性。  相似文献   

7.
Huang H  Qu H 《Analytica chimica acta》2011,707(1-2):47-56
Alcohol precipitation is a critical unit operation during the manufacture of Chinese herbal injections. To facilitate enhanced process understanding and develop control strategy, the use of near-infrared spectroscopy (NIRS) combined with multivariate statistical process control (MSPC) methodology was investigated for in-line monitoring of alcohol precipitation. The effectiveness of the proposed approach was evaluated through an experimental campaign. Six batches were run under normal operating conditions to study batch-to-batch variation or batch reproducibility and establish MSPC control limits, while artificial process variations were purposefully introduced into the four test batches to assess the capability of the model for real-time fault detection. Several MSPC tools were compared and assessed. NIRS, in conjunction with MSPC, has proven to be a feasible process analytical technology (PAT) tool for monitoring batch evolution and potentially facilitating model-based advanced process control of the alcohol precipitation during the manufacture of Chinese herbal injections.  相似文献   

8.
Control of bioprocesses requires reliable and robust on- or in-line monitoring tools providing real-time information on process dynamics. Heat generation related to metabolic activity of living systems is currently gaining importance in bioprocess industry due to its non-invasive and essentially instantaneous characteristics. This study deals with monitoring and control of pure aerobic fed-batch cultures of three Crabtree-negative yeast strains, Kluyveromyces marxianus, Candida utilis and Pichia pastoris, based on in-line measured, metabolic heat flow signals. A high resolution biocalorimeter (BioRC1) was developed from a standard bench-scale heat flow calorimeter (RC1). The BioRC1 was equipped with in-line (dielectric spectroscopy, pH probe and dissolved oxygen probe) and at-line (exit gas analyser) sensors to characterise the growth behaviour of the yeast cells. Both metabolic heat flow and biomass profiles exhibited similar behaviour proving the significance of employing heat flow signal as a key-parameter for the system under investigation. A simple estimator for biomass concentration and specific growth rate was formulated based on heat flow values. In order to evaluate the potential of calorimetry as a reliable and powerful process monitoring tool, the robustness, reliability as well as the broad applicability of the developed estimators was assessed through comparison with off-line measurement techniques and showed promising results for general applicability with a wide range of bioprocesses.  相似文献   

9.
Implementation of process analytical technology (PAT) tools in the manufacturing process of liquid detergent compositions should allow fast and non-destructive evaluation of the product quality. The aim of this study was to develop and validate a rapid method for quantifying the chemical compounds of five washing liquid precursors. Raman spectroscopy was applied in combination with a two-step multivariate modeling procedure. In first instance, a SIMCA (Soft Independent Modeling of Class Analogy) model was developed and validated, allowing the distinction between the different laundry detergents. Once the product was correctly identified, it was aimed at predicting the concentration of its individual components using partial least squares (PLS) models. Raman spectra were collected at-line with a total acquisition time of 20 s, using a non-contact fiber-optic probe.  相似文献   

10.
In this paper the batch suspension copolymerization of ethyl acrylate/2 ethyl hexylacrylate (EA/2-EHA) for production of suspension-based microsphere acrylic pressure sensitive adhesives (PSA) is presented. The effects on the adhesion properties of PSA different process (reaction temperature and stirrer speed) as well as chemical parameters (amount of EA, initiator concentration) are discussed. The conversion was monitored in-line using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and the results were compared with the standard gravimetrical method. The glass transition temperatures (Tg) of the PSAs were measured using differential scanning calorimetry (DSC) technique, while molecular weight distribution (MWD) was determined by gel permeation chromatography (GPC). The adhesion properties of PSAs were characterized via the measurements of tack, peel adhesion and peel strength. The results of the experiments have shown that the kinetics of the suspension polymerization for production of PSAs is significantly affected by temperature of polymerization and the initiator concentration, but are shown to be relatively independent of the EA amount and the stirrer speed. The tack, peel and shear strength depend on the mean particle size and particle size (PS) distribution (PSD) and Tg. The mean particle size and PSD depend primarily on the stirrer speed during the PSA synthesis process, while the Tg is most affected by amount of EA used for the synthesis. The results have also shown a rather unexpected relationship between MWD of the PSAs and the applicative properties: tack, peel and shear are seen to be increasing to the decreasing values of weight average MWD, which is the exact opposite of the previously published research. The most likely explanation for this relationship is the formation of a gel during the synthesis of PSA.  相似文献   

11.
The cascading third-order Raman process in binary mixtures of benzene and n-hexane was studied by six-wave mixing coherent anti-Stokes Raman scattering spectroscopy. By examining the concentration dependence of the cascading third-order signal intensity, we investigated the formation of local structures of benzene in the binary mixtures. A significant deviation from the dependence expected for homogeneous mixtures was observed at benzene concentrations above 7 mol dm(-3). This deviation can be interpreted in terms of optical inhomogeneity caused by the formation of domain structures of benzene molecules. We discuss the feasibility of the cascading third-order process as a sensitive probe for the microscopic structures that are formed in liquids and solutions.  相似文献   

12.
The application of near-infrared (NIR) spectroscopy for in-line monitoring of extraction process of scutellarein from Erigeron breviscapus (vant.) Hand-Mazz was investigated. For NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm pathlength flow cell were utilized to collect spectra in real-time. High performance liquid chromatography (HPLC) was used as a reference method to determine scutellarein in extract solution. Partial least squares regression (PLSR) calibration model of Savitzky-Golay smoothing NIR spectra in the 5450-10,000 cm(-1) region gave satisfactory predictive results for scutellarein. The results showed that the correlation coefficients of calibration and cross validation were 0.9967 and 0.9811, respectively, and the root mean square error of calibration and cross validation were 0.044 and 0.105, respectively. Furthermore, both the moving block standard deviation (MBSD) method and conformity test were used to identify the end point of extraction process, providing real-time data and instant feedback about the extraction course. The results obtained in this study indicated that the NIR spectroscopy technique provides an efficient and environmentally friendly approach for fast determination of scutellarein and end point control of extraction process.  相似文献   

13.
A new sorbent called reinforced porous hybrid beads (RPHB) based on an Algerian aluminium pillared montmorillonite (Al-PIMt)/polyvinyl alcohol (PVA) and calcium carbonate (CC) was prepared using the extrusion method. These new composite bead sorbents were characterized by Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The mechanical properties for a series of wet RPHB are measured using uniaxial compression tests. These RPHB beads were used in the batch mode sorption of malachite green (MG) in aqueous solution.The effects of independent variables such as the initial concentration of MG, the sorbent dose and the pH of the suspension as well as their interactions during sorption processes are investigated. A Box–Behnken design based on the response surface methodology (RSM) is applied to evaluate the main effects of the variables. The response in term of the MG removal efficiency is maximized. The study of the interactions between the three variables shows that the initial concentration of MG and the pH of the aqueous media appear to be the most significant variables which significantly affect the elimination of MG. The optimal values favorable for the best sorption of MG on these new porous beads are an initial concentration of MG (92.36 mg L−1), a pH of the aqueous medium (pH = 5.01) as well as the dose of the RPHB sorbent (1.03 g L−1).Statistical analysis results show a good correlation between the experimental results and those predicted with a very satisfactory coefficient of determination value (R2 = 0.99).  相似文献   

14.
The detection and identification of dilute bacterial samples by surface-enhanced Raman spectroscopy has been explored by mixing aqueous suspensions of bacteria with a suspension of nanocolloidal silver particles. An estimate of the detection limit of E. coli was obtained by varying the concentration of bacteria. By correcting the Raman spectra for the broad librational OH band of water, reproducible spectra were obtained for E. coli concentrations as low as approximately 103 cfu/mL. To aid in the assignment of Raman bands, spectra for E. coli in D2O are also reported. Figure Light scattering apparatus used to detect bacteria  相似文献   

15.
A novel protocol for precisely coating individual multiwall carbon nanotubes (MWCNTs) with an ultrathin layer of polypyrrole was developed. The nanocoated MWCNTs were successfully prepared by in situ chemical deposition of polypyrrole in an aqueous suspension of MWCNTs. The coating layer was very uniform and the thickness of the layer was determined by controlling the monomer concentration used, which gave nanometer precision. The products were characterized by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and conductivity and current-voltage measurements. The ultrathin polypyrrole layer could electrically insulate individual MWCNTs.  相似文献   

16.
Monolayers of the thiolipopeptide NH(2)-Cys-Ala-Ser-Ala-Ala-Ser-Ser-Ala-Pro-Ser-Ser-(Myr)Lys(Myr)-OH (III) were formed on gold surfaces by self-assembly, mixed with a lateral spacer of the same peptide composition, NH(2)-Cys-Ala-Ser-Ala-Ala-Ser-Ser-Ala-Pro-Ser-Ser-Lys-OH (I). Different mixing ratios were employed ranging from 0.1 to 1, corresponding to 10-100% thiolipopeptide. These self-assembled monolayers (SAMs) were then exposed to a suspension of liposomes with the aim of forming lipid bilayers as a function of the mixing ratio. A clear optimum with respect to homogeneity and electrical properties of the membranes was obtained in the middle region (0.5) of mixing ratio, as revealed by surface plasmon resonance spectroscopy, impedance spectroscopy, and fluorescence microscopy. The combination of these methods was shown to be a powerful tool, although a true lipid bilayer was not obtained. Instead, vesicle adsorption was shown to be the predominant process, and FRAP (fluorescence recovery after photobleaching) measurements showed that the films were not fluid on the micrometer length scale.  相似文献   

17.
We describe the direct electro-chemical reduction of graphene oxide to graphene from aqueous suspension by applying reduction voltages exceeding -1.0 to -1.2 V. The conductivity of the deposition medium is of crucial importance and only values between 4-25 mS cm(-1) result in deposition. Above 25 mS cm(-1) the suspension de-stabilises while conductivities below 4 mS cm(-1) do not show a measurable deposition rate. Furthermore, we show that deposition can be carried out over a wide pH region ranging from 1.5 to 12.5. The electro-deposition process is characterised in terms of electro-chemical methods including cyclic voltammetry, quartz crystal microbalance, impedance spectroscopy, constant amperometry and potentiometric titrations, while the deposits are analysed via Raman spectroscopy, infra-red spectroscopy, X-ray photoelectron spectroscopy and X-ray diffractometry. The determined oxygen contents are similar to those of chemically reduced graphene oxide, and the conductivity of the deposits was found to be ~20 S cm(-1).  相似文献   

18.
Warfarin sodium is a low-dose pharmaceutical blood thinner that exists in two forms: the clathrate form and the amorphous form. In commercially available warfarin sodium oral suspension, the active pharmaceutical ingredient (API) is added in the amorphous state. This study investigates the apparent instability of the commercially available warfarin liquid oral formulation using Raman and IR spectroscopy, X-ray diffraction, differential scanning calorimetry, UV spectroscopy, and optical microscopy. Warfarin, not its sodium salt, was identified as the undissolved solid existing in the suspension. This was found to be due to the dissociation of sodium salt and the protonation of the warfarin ion in the liquid phase, which triggered the crystallization of the sparingly soluble unsalted form. The coexistence of protonated and unprotonated warfarin ions in the supernatant, as detected by Raman and UV spectroscopy, confirmed this assumption. Study of the dissolution of warfarin sodium amorphous salt and crystalline sodium clathrate in the placebo and pure water verified the results. The effect of pH and temperature on warfarin precipitation was also explored.  相似文献   

19.
The present study focuses on the implementation of an in-line quantitative near infrared (NIR) spectroscopic method for determining the active content of pharmaceutical pellets. The first aim was to non-invasively interface a dispersive NIR spectrometer with four realistic particle streams existing in the pellets manufacturing environment. Regardless of the particle stream characteristics investigated, NIR together with Principal Component Analysis (PCA) was able to classify the samples according to their active content. Further, one of these particle stream interfaces was non-invasively investigated with a FT-NIR spectrometer. A predictive model based on Partial Least Squares (PLS) regression was able to determine the active content of pharmaceutical pellets. The NIR method was finally validated with an external validation set for an API concentration range from 80 to 120% of the targeted active content. The prediction error of 0.9% (root mean standard error of prediction, RMSEP) was low, indicating the accuracy of the NIR method. The accuracy profile on the validation results, an innovative approach based on tolerance intervals, demonstrated the actual and future performance of the in-line NIR method. Accordingly, the present approach paves the way for real-time release-based quality system.  相似文献   

20.
A simple and inexpensive method to exfoliate boron nitride powder to form boron nitride nanosheets (BNNSs) with few layers was achieved by using a physically thermal process. The obtained BNNSs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), IR spectroscopy, and Raman spectroscopy. The size distribution of the sheets and average sheet size is in the range of 80–380 nm and 200±62 nm, respectively, and the pure phase h‐BN products were confirmed. XPS result showed the B/N atomic ratio to be 0.99. In addition, the BNNSs can well disperse in aqueous solution to form a cloudy suspension and importantly, can remain suspended for 1 month without precipitate, which would have good potential in a wide range of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号