首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yea KH  Lee S  Kyong JB  Choo J  Lee EK  Joo SW  Lee S 《The Analyst》2005,130(7):1009-1011
Rapid and highly sensitive trace analysis of cyanide water pollutant in an alligator teeth-shaped PDMS microfluidic channel was investigated using surface-enhanced Raman spectroscopy. Compared with previously reported analytical methods, the detection sensitivity was enhanced by several orders of magnitude.  相似文献   

2.
A new DNA hybridization analytical method using a microfluidic channel and a molecular beacon-based probe (MB-probe) is described. A stem-loop DNA oligonucleotide labeled with two fluorophores at the 5′ and 3′ termini (a donor dye, TET, and an acceptor dye, TAMRA, respectively) was used to carry out a fast and sensitive DNA analysis. The MB-probe utilized the specificity and selectivity of the DNA hairpin-type probe DNA to detect a specific target DNA of interest. The quenching of the fluorescence resonance energy transfer (FRET) signal between the two fluorophores, caused by the sequence-specific hybridization of the MB-probe and the target DNA, was used to detect a DNA hybridization reaction in a poly(dimethylsiloxane) (PDMS) microfluidic channel. The azoospermia gene, DYS 209, was used as the target DNA to demonstrate the applicability of the method. A simple syringe pumping system was used for quick and accurate analysis. The laminar flow along the channel could be easily controlled by the 3-D channel structure and flow speed. By injecting the MB-probe and target DNA solutions into a zigzag-shaped PDMS microfluidic channel, it was possible to detect their sequence-specific hybridization. Surface-enhanced Raman spectroscopy (SERS) was also used to provide complementary evidence of the DNA hybridization. Our data show that this technique is a promising real-time detection method for label-free DNA targets in the solution phase. Figure FRET-based DNA hybridization detection using a molecular beacon in a zigzag-shaped PDMS microfluidic channel  相似文献   

3.
Integrated microfluidic cell culture and lysis on a chip   总被引:1,自引:0,他引:1  
We present an integrated microfluidic cell culture and lysis platform for automated cell analysis that improves on systems which require multiple reagents and manual procedures. Through the combination of previous technologies developed in our lab (namely, on-chip cell culture and electrochemical cell lysis) we have designed, fabricated, and characterized an integrated microfluidic platform capable of culturing HeLa, MCF-7, Jurkat, and CHO-K1 cells for up to five days and subsequently lysing the cells without the need to add lysing reagents. On-demand lysis was accomplished by local hydroxide ion generation within microfluidic chambers, releasing both proteinacious (GFP) and genetic (Hoescht-stained DNA) material. Sample proteins exposed to the electrochemical lysis conditions were immunodetectable (p53) and their enzymatic activity (HRP) was investigated.  相似文献   

4.
In this paper, a microfluidic chip for the manipulation and capture of cancer cells was introduced, in which the combination of dielectrophoresis (DEP) and a binding method based on chemical interactions by using cell-specific aptamers was performed to enhance the capture strength and specificity. The device has been simply constructed from a straight-channel PDMS placed on a glass substrate that has patterned electrode structures and a self-assembled monolayer of gold nanoparticles (AuNPs). The target cells were transported to the manipulation area by flow and attracted down to the region between the electrodes under the influence of positive DEP force. This approach facilitated subsequent selective capture by the modified aptamers on the AuNPs. The distribution of the electric field in the channel has also been simulated to clarify the DEP operation. As a result, the device has been shown to effectively capture target lung cancer cells with a concentration as low as 2 × 10 4 $2\ \ensuremath{\times{}}\ {10}^{4}\ $ cells/mL. The capture specificity in a sample of mixed cells is up to 80.4%. This technique has the potential to be applied to detection methods for many types of cancer.  相似文献   

5.
Hargis AD  Alarie JP  Ramsey JM 《Electrophoresis》2011,32(22):3172-3179
A microfluidic device capable of rapidly analyzing cells in a high-throughput manner using electrical cell lysis is further characterized. In the experiments performed, cell lysis events were studied using an electron multiplying charge coupled device camera with high frame rate (>100 fps) data collection. It was found that, with this microfluidic design, the path that a cell follows through the electric field affects the amount of lysate injected into the analysis channel. Elimination of variable flow paths through the electric field was achieved by coating the analysis channel with a polyamine compound to reverse the electroosmotic flow (EOF). EOF reversal forced the cells to take the same path through the electric field. The improved control of the cell trajectory will reduce device-imposed bias on the analysis and maximizes the amount of lysate injected into the analysis channel for each cell, resulting in improved analyte detection capabilities.  相似文献   

6.
This paper presents a new approach for the metrological characterization of microfabricated features on microfluidic chips, based on a combination of poly(dimethylsiloxane) (PDMS) replication and charge-coupled device (CCD) imaging. A PDMS replicate was cast from the original chip sample, and a 2-mm thick sample slice was cut from the replica at the cross-section to be studied. The digital image of the revealed structural profile was captured by a CCD camera under a microscope, and the image was processed using specially-developed algorithms for CCD image calibration and edge detection. Depth and width measurements obtained using the method agreed well with those gained using a stylus profiler and universal measuring microscope, with a deviation of below 0.9 m, while profile distortions of deeper structures using stylus profilers were avoided. The method is reliable, non-destructive, and cheap and simple to implement in any analytical laboratory.  相似文献   

7.
A rapid DNA analysis has been developed based on a fluorescence intensity change of a molecular beacon in a PDMS microfluidic channel. Recently, we reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). However, there are some limitations in its application to real DNA samples because the target DNA must be labelled with a suitable fluorescent dye. To resolve this problem, we have developed a new DNA microfluidic sensor using a molecular beacon. By monitoring the change in the restored fluorescence intensity along the channel length, it is possible to rapidly detect any hybridization of the molecular beacon to the target DNA. In this case, the target DNA does not need to be labelled. Our experimental results demonstrate that this microfluidic sensor using a molecular beacon is a promising diagnostic tool for rapid DNA hybridization analysis.  相似文献   

8.
The intense luminescence of the new complex Ir(ppy)(2)(pybz) (1) within the cytoplasm of live cells can be discriminated from the fluorescence of an organic stain, solely on the basis of the emission timescale {pybzH = 2-pyridyl-benzimidazole}. The protonated form of 1 displays red-shifted emission, and may be implicated in a superior uptake compared to Ir(ppy)(3).  相似文献   

9.
The ability to strategically induce or suppress cell lysis is critical for many cellular-level diagnostic and therapeutic applications conducted within electrokinetic microfluidic platforms. The chemical and structural integrity of sub-cellular components is important when inducing cell lysis. However, metal electrodes and electrolytes participate in undesirable electrochemical reactions that alter solution composition and potentially damage protein, RNA, and DNA integrity within device microenvironments. For many biomedical applications, cell viability must be maintained even when device-imposed cell-stressing stimuli (e.g., electrochemical reaction byproducts) are present. In this work, we explored a novel and tunable method to accurately induce or suppress device-imposed artifacts on human red blood cell (RBC) lysis in non-uniform AC electric fields. For precise tunability, a dielectric hafnium oxide (HfO2) layer was used to prevent electron transfer between the electrodes and the electric double layer and thus reduce harmful electrochemical reactions. Additionally, a low concentration of Triton X-100 surfactant was explored as a tool to stabilize cell membrane integrity. The extent of hemolysis was studied as a function of time, electrode configuration (T-shaped and star-shaped), cell position, applied non-uniform AC electric field, with uncoated and HfO2 coated electrodes (50 nm), and absence and presence of Triton X-100 (70 µM). Tangible outcomes include a parametric analysis relying upon literature and this work to design, tune, and operate electrokinetic microdevices to intentionally induce or suppress cellular lysis without altering intracellular components. Implications are that devices can be engineered to leverage or minimize device-imposed biological artefacts extending the versatility and utility of electrokinetic diagnostics.  相似文献   

10.
A fully integrated polydimethylsiloxane (PDMS)/modified PDMS membrane/SU-8/quartz hybrid chip was developed for protein separation using isoelectric focusing (IEF) mechanism coupled with whole-channel imaging detection (WCID) method. This microfluidic chip integrates three components into one single chip: (i) modified PDMS membranes for separating electrolytes in the reservoirs from the sample in the microchannel and thus reducing pressure disturbance, (ii) SU-8 optical slit to block UV light (below 300?nm) outside the channel aiming to increase detection sensitivity, and (iii) injection and discharge capillaries for continuous operation. Integration of all these components on a single chip is challenging because it requires fabrication techniques for perfect bonding between different materials and is prone to leakage and blockage. This study has addressed all the challenges and presented a fully integrated chip, which is more robust with higher sensitivity than the previously developed IEF chips. This chip was tested by performing protein and pI marker separation. The separation results obtained in this chip were compared with that obtained in commercial cartridges. Side-by-side comparison validated the developed chip and fabrication techniques.  相似文献   

11.
Matsui T  Franzke J  Manz A  Janasek D 《Electrophoresis》2007,28(24):4606-4611
This paper reports the application of temperature gradient focusing (TGF) in a PDMS/glass hybrid microfluidic chip. With TGF, by the combination of a temperature gradient along a microchannel, an applied electric field, and a buffer with a temperature-dependent ionic strength, analytes are focused by balancing their electrophoretic velocities against the bulk velocity of the buffer containing the analytes. In this work, Oregon Green 488 carboxylic acid was concentrated approximately 30 times as high as the initial concentration in 45 s at moderate electric strength of 70 V/cm and a temperature gradient of 55 degrees C across the PDMS/glass hybrid microfluidic chip with a 1 cm long capillary.  相似文献   

12.
Sheng Y  Bowser MT 《The Analyst》2012,137(5):1144-1151
A microfluidic counter current dialysis device for size based purification of DNA is described. The device consists of two polydimethylsiloxane (PDMS) channels separated by a track etched polycarbonate membrane with a 50 nm pore size. Recovery of fluorescein across the membrane was compared with 10 and 80 nucleotide (nt) ssDNA to characterize the device. Recovery of all three analytes improved with decreasing flow rate. Size selectivity was observed. Greater than 2-fold selectivity between 10 nt and 80 nt ssDNA was observed at linear velocities less than 3mm s(-1). Increasing the ionic strength of the buffer increased transport across the membrane. Recovery of 80 nt ssDNA increased over 4-fold by adding 30 mM NaCl to the buffer. The effect was size dependent as 10 nt showed a smaller increase while the recovery of fluorescein was largely unaffected by increasing the ionic strength of the buffer.  相似文献   

13.
高健  殷学锋  方肇伦 《分析试验室》2003,22(Z1):373-374
单细胞分析对重大疾病的早期诊断等方面有重要意义[1].微流控分析芯片的网络结构和微米级的通道尺寸适合于单细胞进样、溶膜和分离分析.但目前的报道主要集中在细胞培养、计数和筛选[2].我们在十字通道微流控芯片上,通过调节储液池的液面高度和细胞悬液密度,使单细胞逐个通过芯片进样通道和分离通道之间的区域,再结合控制电渗流方向,使单细胞固定在分离通指定位置,然后用电泳缓冲液结合高电场实现细胞快速溶膜,接着进行电泳分离和LIF检测.实现了单个血红细胞内谷胱甘肽(GSH)的高效分离及定量分析.  相似文献   

14.
In this article, we demonstrate a novel approach to implementing multiplex enzyme-linked immunosorbent assay (ELISA) in a single microfluidic channel by exploiting the slow diffusion of the soluble enzyme reaction product across the different assay segments. The functionality of the reported device is realized by creating an array of ELISA regions within a straight conduit that are selectively patterned with chosen antibodies/antigens via a flow-based method. The different analytes are then captured in their respective assay segments by incubating a 5-μL aliquot of sample in the analysis channel for an hour under flow conditions. Once the ELISA surfaces have been prepared and the enzyme substrate introduced into the analysis channel, it is observed that the concentration of the soluble enzyme reaction product (resorufin) at the center of each assay region grows linearly with time. Further, the rate of resorufin generation at these locations is found to be proportional to the concentration of the analyte being assayed in that segment provided that the ELISA reaction time in the system (τ R ) is kept much shorter than that required by the resorufin molecules to diffuse across an assay segment (τ D ). Under the operating condition τ R  << τ D , the reported device has been shown to have a 35% lower limit of detection for the target analyte concentration compared with that on a commercial microtiter plate using only a twentieth of the sample volume.  相似文献   

15.
Chen X  Cui da F  Liu CC 《Electrophoresis》2008,29(9):1844-1851
Integrating cell lysis and DNA purification process into a micrototal analytical system (microTAS) is one critical step for the analysis of nucleic acids. On-chip cell lysis based on a chemical method is realized by sufficient blend of blood sample and the lyzing reagent. In this paper two mixing models, T-type mixing model and sandwich-type mixing model, are proposed and simulation of those models is conducted. Result of simulation shows that the sandwich-type mixing model with coiled channel performs best and this model is further used to construct the microfluidic biochip for on-line cell lysis and DNA extraction. The result of simulation is further verified by experiments. It asserts that more than 80% mixing of blood sample and lyzing reagent which guarantees that completed cell lysis can be achieved near the inlet location when the cell/buffer velocity ratio is less than 1:5. After cell lysis, DNA extraction by means of a solid-phase method is implemented by using porous silicon matrix which is integrated in the biochip. During continuous flow process in the microchip, rapid cell lysis and PCR-amplifiable genomic DNA purification can be achieved within 20 min. The potential of this microfluidic biochip is illustrated by pretreating a whole blood sample, which shows the possibility of integration of sample preparation, PCR, and separation on a single device to work as portable point-of-care medical diagnostic system.  相似文献   

16.
Gao J  Yin XF  Fang ZL 《Lab on a chip》2004,4(1):47-52
A microfluidic system was developed for the analysis of single biological cells, with functional integration of cell sampling, single cell loading, docking, lysing, and capillary electrophoretic (CE) separation with laser induced fluorescence (LIF) detection in microfabricated channels of a single glass chip. Channels were 12 microm deep and 48 microm wide, with a simple crossed-channel design. The effective separation channel length was 35 mm. During sampling with a cell suspension (cell population 1.2 x 10(5) cells per mL in physiological salt solution), differential hydrostatic pressure (created by adjusting liquid levels in the four reservoirs) was used to control cell flow exclusively through the channel crossing. Single cell loading into the separation channel was achieved by electrophoretic means by applying a set of potentials at the four reservoirs, counteracting the hydrostatic flow. A special docking (adhering) procedure for the loaded cell was applied before lysis by repeatedly connecting and disconnecting a set of low potentials, allowing precise positioning of the cell within the separation channel. Cell lysis was then effected within 40 ms under an applied CE separation voltage of 1.4 kV (280 V cm(-1)) within the working electrolyte (pH 9.2 borate buffer) without additional lysates. The docked lysing approach reduced dispersion of released intracellular constituents, and significantly improved the reproducibility of CE separations. Glutathione (GSH) was used as a model intracellular component in single human erythrocyte cells. NDA derivatized GSH was detected using LIF. A throughput of 15 samples h(-1), a retention time precision of 2.4% RSD was obtained for 14 consecutively injected cells. The average cellular concentration of GSH in human erythrocytes was found to be 7.2 [times] 10(-4)+/- 3.3 x 10(-4) M (63 +/- 29 amol per cell). The average separation efficiency for GSH in lysed cells was 2.13 x 10(6)+/- 0.4 x 10(6) plates per m, and was about a factor of 5 higher than those obtained with GSH standards using pinched injection.  相似文献   

17.
Kim KS  Park JK 《Lab on a chip》2005,5(6):657-664
This paper describes a novel microfluidic immunoassay utilizing binding of superparamagnetic nanoparticles to beads and deflection of these beads in a magnetic field as the signal for measuring the presence of analyte. The superparamagnetic 50 nm nanoparticles and fluorescent 1 microm polystyrene beads are immobilized with specific antibodies. When target analytes react with the polystyrene beads and superparamagnetic nanoparticles simultaneously, the superparamagnetic nanoparticles can be attached onto the microbeads by the antigen-antibody complex. In the poly(dimethylsiloxane)(PDMS) microfluidic channel, only the microbeads conjugated with superparamagnetic nanoparticles by analytes consequently move to the high gradient magnetic fields under the specific applied magnetic field. In this study, the magnetic force-based microfluidic immunoassay is successfully applied to detect the rabbit IgG and mouse IgG as model analytes. The lowest concentration of rabbit IgG and mouse IgG measured over the background is 244 pg mL(-1) and 15.6 ng mL(-1), respectively. The velocities of microbeads conjugated with superparamagnetic nanoparticles are demonstrated by magnetic field gradients in microfluidic channels and compared with the calculated magnetic field gradients. Moreover, dual analyte detection in a single reaction is also performed by the fluorescent encoded microbeads in the microfluidic device. Detection range and lower detection limit can be controlled by the microbeads concentration and the higher magnetic field gradient.  相似文献   

18.
Kim MJ  Lee SC  Pal S  Han E  Song JM 《Lab on a chip》2011,11(1):104-114
Drug-induced cardiotoxicity or cytotoxicity followed by cell death in cardiac muscle is one of the major concerns in drug development. Herein, we report a high-content quantitative multicolor single cell imaging tool for automatic screening of drug-induced cardiotoxicity in an intact cell. A tunable multicolor imaging system coupled with a miniaturized sample platform was destined to elucidate drug-induced cardiotoxicity via simultaneous quantitative monitoring of intracellular sodium ion concentration, potassium ion channel permeability and apoptosis/necrosis in H9c2(2-1) cell line. Cells were treated with cisapride (a human ether-à-go-go-related gene (hERG) channel blocker), digoxin (Na(+)/K(+)-pump blocker), camptothecin (anticancer agent) and a newly synthesized anti-cancer drug candidate (SH-03). Decrease in potassium channel permeability in cisapride-treated cells indicated that it can also inhibit the trafficking of the hERG channel. Digoxin treatment resulted in an increase of intracellular [Na(+)]. However, it did not affect potassium channel permeability. Camptothecin and SH-03 did not show any cytotoxic effect at normal use (≤300 nM and 10 μM, respectively). This result clearly indicates the potential of SH-03 as a new anticancer drug candidate. The developed method was also used to correlate the cell death pathway with alterations in intracellular [Na(+)]. The developed protocol can directly depict and quantitate targeted cellular responses, subsequently enabling an automated, easy to operate tool that is applicable to drug-induced cytotoxicity monitoring with special reference to next generation drug discovery screening. This multicolor imaging based system has great potential as a complementary system to the conventional patch clamp technique and flow cytometric measurement for the screening of drug cardiotoxicity.  相似文献   

19.
Toepke MW  Beebe DJ 《Lab on a chip》2006,6(12):1484-1486
Microfluidic devices made out of polydimethylsiloxane (PDMS) have many physical properties that are useful for cell culture applications, such as transparency and gas permeability. Another distinct characteristic of PDMS is its ability to absorb hydrophobic small molecules. Partitioning of molecules into PDMS can significantly change solution concentrations and could potentially alter experimental outcomes. Herein we discuss PDMS absorption and its potential impact on microfluidic experiments.  相似文献   

20.
In this paper, we describe a novel method for fabricating 2-D and 3-D microchannel patterns in a flexible platform of cross-linked poly(dimethylsiloxane) (PDMS). Here, a slender nylon thread formed into different 2-D and 3-D shapes is used as a template that is embedded inside a block of cross-linked PDMS. The cross-linked network is then allowed to swell in a suitable solvent that swells the network selectively but leaves the nylon thread unaltered. The thread is then gently removed from the swollen network leaving behind a microchannel. Channels of a variety of topologically complex orientations like knots, helices, super-helices, and channels of a variety of cross-sections can be generated using this simple method. Finally, we have presented an application by generating inside layers of adhesive in these microchannels, which are observed to enhance the adhesion strength significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号