首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of sample clarification and high-performance liquid chromatography specifically developed to permit precise and rapid determination of vitamin A (retinol) and vitamin E (alpha-tocopherol) in serum and plasma is reported. Serum proteins were denatured by the addition of acetonitrile containing alpha-tocopherol acetate, the internal standard; the vitamins were subsequently extracted into an organic matrix consisting of ethyl acetate-butanol (1:1); no solvent evaporation step was required. The three vitamins of interest were eluted from a reversed-phase C18 column with an isocratic mobile phase methanol-water (95:5); detection was accomplished by measuring ultraviolet absorption at 280 nm. Recoveries of retinol, alpha-tocopherol and alpha-tocopherol acetate from spiked aqueous samples averaged 100.0, 100.0 and 98.8%, respectively. Recoveries of retinol, alpha-tocopherol and alpha-tocopherol acetate from plasma and serum relative to water were 102.6, 96.9 and 96.5%, respectively. Retinol and alpha-tocopherol were stable in the extraction matrix for up to 3.5 h, and were stable in heparinized plasma stored at room temperature for two days. Oxalate, citrate and EDTA caused significant losses of retinol and alpha-tocopherol, while vitamin levels in serum and heparinized plasma were similar. Limits of detection for retinol and alpha-tocopherol were 60 ng/ml and 0.9 micrograms/ml, respectively. Each run required 12 min. Same-day coefficients of variation were 3.5 and 3.6% for retinol and alpha-tocopherol, respectively (n = 11). Between-day coefficients of variation for retinol and alpha-tocopherol were 4.8 and 5.5%, respectively (n = 5). This method permits simple, rapid, sensitive, selective and precise determination of retinol and alpha-tocopherol using 0.5 ml of serum or heparinized plasma.  相似文献   

2.
A method for the simultaneous determination of liposoluble vitamins in cooked meals was established. Saponification was performed with 50% (w/v) KOH at 80 degrees C, and ascorbic acid was added as antioxidant. The subsequent extraction was carried out with diethyl ether. This was followed by a liquid chromatographic separation on a reversed-phase C18 column with methanol-water (94:6, v/v as the mobile phase. Retinyl acetate was used as the internal standard. The analytical parameters linearity, detection limit (0.19 and 8.33 microg/100 g for retinol and alpha-tocopherol, respectively), precision of the method (RSD=5.24 and 6.99% for retinol and alpha-tocopherol, respectively) and recovery assays (95.6 and 96.5% for retinol and alpha-tocopherol, respectively) show that the method studied is useful for measuring these compounds in foods and cooked meals.  相似文献   

3.
A simultaneous determination of retinol, alpha-tocopherol and beta-carotene in serum by high-performance liquid chromatography is described. Total analysis time is 13 min. A reversed-phase (Ultrasphere ODS, 5 microns) column is used with a mobile phase of acetonitrile-methanol-dichloromethane (70:10:20, v/v/v) and a flow-rate of 1.2 ml/min. Retinol is monitored at 325 nm, alpha-tocopherol at 292 nm and beta-carotene at 450 nm. Serum is deproteinized with ethanol containing the internal standard (alpha-tocopherol acetate), then extracted with hexane. The evaporated organic layer is reconstituted with the mobile phase and injected. The choice of the eluent is discussed, as well as the choice of an internal standard and the need for an antioxidant during the extraction step. Sixteen different eluents are compared in terms of analysis time and selectivity. The linear concentration ranges (retinol 0.016-13.7 microM, alpha-tocopherol 0.18-91.8 microM, beta-carotene 0.05-5.75 microM), within-run coefficients of variation (retinol less than 7%; alpha-tocopherol less than 8%, beta-carotene less than 7%), between-run coefficients of variation (retinol less than 13%, alpha-tocopherol less than 9%, beta-carotene less than 8%) and recoveries (retinol greater than 95%, alpha-tocopherol greater than 91%, beta-carotene greater than 80%) are suitable for clinical investigations. Serum reference values were found to be 2.47 +/- 0.61 microM (retinol), 30.5 +/- 6.8 microM (alpha-tocopherol) and 0.91 +/- 0.55 microM (beta-carotene). A significant difference (p less than 0.001) between males and females was found for retinol.  相似文献   

4.
We used reversed-phase HPLC with diode array detection to simultaneously measure the major isoforms of vitamins A, E, and the carotenoids in serum from 55 healthy people with spinal cord injuries. Typically, the method measured retinol (vitamin A), alpha-tocopherol (vitamin E) and beta-carotene, alpha-carotene, lutein, lycopene, and cryptoxanthin (carotenoids). gamma-Tocopherol (vitamin E), 25-hydroxycalciferol (vitamin D), and the carotenoid zeaxanthin could also be measured when they were present in high concentrations. Healthy people with spinal cord injuries were more likely than similar people without injuries to have low concentrations of alpha-tocopherol, and to a lesser extent retinol and beta-carotene.  相似文献   

5.
A new and simple method for the determination of fat-soluble vitamins (retinol, alpha-tocopherol, and beta-carotene) in human serum was developed and validated by using liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization (LC-APCI-MS-MS). Different solvent mixtures were tested to obtain deproteinization and extraction of the analytes from the matrix. As a result, a volume of 240 microL of a 1:1 (v/v) ethanol/ethyl acetate mixture added to 60 microL of serum was found to be suitable for both protein precipitation and antioxidants solubilization, giving the best recovery for all three analytes. Deproteinized samples (20 microL) were injected after dilution, without the need for concentration or evaporation to dryness and reconstruction of the sample. Vitamins were separated on a C-8 column using a 95:5 (v/v) methanol/dichloromethane mixture and ionized in the positive-ion mode; detection was performed in the selected-reaction monitoring mode. Linearity of the LC-APCI-MS-MS method was established over 5 orders of magnitude for retinol and alpha-tocopherol, whereas in the case of beta-carotene it was limited to 4 orders. Lower limits of quantitation were 1.7, 2.3, and 4.1 nM for retinol, alpha-tocopherol, and beta-carotene, respectively. Serum concentrations of retinol, alpha-tocopherol, and alpha+beta-carotene determined in a group of healthy volunteers were 2.48, 38.07, and 0.50 microM, respectively, in samples collected in winter ( n=122) and 2.69, 45.88, and 0.90 microM during summer ( n=66).  相似文献   

6.
A microemulsion electrokinetic chromatographic method was used to separate fat-soluble vitamins. The separation of retinol, cholecalciferol, and delta- and alpha-tocopherol was performed using a microemulsion containing 0.75% (v/v) n-heptane, 30 mM bis(2-ethylhexyl)sodium sulfosuccinate (AOT), 5% (v/v) 1-butanol, 15% (v/v) 1-propanol and 15% (v/v) methanol in 20mM boric acid-sodium borate buffer. The effect of the different microemulsion constituents was studied, including the type and concentration of surfactant, buffer, oil and co-surfactants. The presence of methanol in the microemulsion was found to be necessary to achieve the separation of the tocopherols. Detection was carried out at 200, 265 and 325 nm for the tocopherols, cholecalciferol and retinol, respectively. Calibration curves and precision data were obtained for each analyte. Good linear relationships were found between the analytical signal and the analytes concentration in the 25-500 mg L(-1) for retinol and cholecalciferol, and 25-300 mg L(-1) for tocopherols ranges. The precision of the method afforded relative standard deviations in the 4.0-10% range.  相似文献   

7.
An HPLC method utilizing a UV and a fluorimetric detector linked in series is described. By use of a simple integrator-controlled time-switched relay, analysis of serum vitamin A and E is accomplished on the same chromatogram and at optimum sensitivity for each detector. A single internal standard (retinyl acetate) monitored only by the UV detector permits measurement of both vitamins over a wide linear range. Precision of the assays is satisfactory, both on a within-day and on a day-to-day basis. Recoveries of both vitamins are virtually 100% whilst sensitivity is 2 μg/L (retinol) and 0.05 mg/L (α-tocopherol).  相似文献   

8.
Our aim was to assess the suitability of ultra-high performance liquid chromatography (UHPLC) for the simultaneous determination of biomarkers of vitamins A (retinol, retinyl esters), E (α- and γ-tocopherol), D (25-OH-vitamin D), and the major carotenoids in human serum to be used in clinical practice. UHPLC analysis was performed on HSS T3 column (2.1 × 100 mm; 1.8 μm) using gradient elution and UV–VIS detection. The system allows the simultaneous determination of retinol, retinyl palmitate, 25-OH-vitamin D, α- and γ-tocopherol, lutein plus zeaxanthin, α-carotene, β-carotene, α- and β-cryptoxanthin and lycopene. The method showed a good linearity over the physiological range with an adequate accuracy in samples from quality control programs. Suitability of the method in clinical practice was tested by analyzing samples (n = 286) from patients. In conclusion, UHPLC constitutes a reliable approach for nutrient/biomarker profiling allowing the rapid, simultaneous and low-cost determination of vitamins A, E, and D (including vitamers and ester forms) and the major carotenoids in clinical practice.  相似文献   

9.
A rapid, sensitive method has been developed for the simultaneous determination of retinol acetate, delta-, gamma-, alpha-tocopherol and alpha-tocopherol acetate. We compare two experimental procedures for simultaneous direct solvent extraction of these vitamins without previous saponification. Method I: the fat milk sample was extracted with ethanol-hexane and injected directly into the chromatographic column. Method II: the power milk sample was extracted with ethanol-hexane and also injected directly into the column. Under optimum conditions the limits of detection for retinol acetate, delta-, gamma-, alpha-tocopherol and alpha-tocopherol acetate were 0.33, 21.2, 32.9, 32.5 and 3.2 ng and the limits of quantification were 0.42, 25.3, 37.9, 36.8 and 6.3 ng, respectively. The precision results showed that the relative standard deviations of repeatability and reproducibility were between 0.74 and 5.7%.  相似文献   

10.
In this work, a simple isocratic reversed-phase HPLC method for determination of alpha-tocopherol in human erythrocytes has been developed and validated. After separation of plasma the erythrocytes were washed three times with 0.9% sodium chloride containing 0.01% butylated hydroxytoluene (BHT) as antioxidant and then were diluted 1:1 (v/v) with the same solution. In the liquid-liquid extraction (LLE) procedure, 2500 microL of n-hexane was added to 500 microL of erythrocytes. After 2 min this mixture was deproteinized by addition of cool ethanol (500 microL, 5 min) denatured with 5% methanol containing alpha-tocopherol acetate (20 micromol L(-1)), as internal standard, and then extracted for 5 min by vortex mixing. After centrifugation (10 min, 1600xg) an aliquot (2000 microL) of the clean extract was separated and evaporated under nitrogen. The residue was dissolved in 400 microL methanol and analysed by reversed-phase HPLC on a 4.6 mmx150 mm, 5 microm Pecosphere C18 column; the mobile phase was 100% methanol, flow rate 1.2 mL min(-1). The volume injected was 100 microL and detection was by diode-array detector at a wavelength of 295 nm. The extraction recovery of alpha-tocopherol from human erythrocytes was 100.0+/-2.0%. The detection limit was 0.1 micromol L(-1) and a linear calibration plot was obtained in the concentration range 0.5-20.0 micromol L(-1). Within determination precision was 5.2% RSD (n=10), between determination precision was 6.1% RSD (n=10). The method was applied successfully in a clinical study of patients with acute pancreatitis and for determination of the reference values in the healthy Czech population.  相似文献   

11.
The aim of this study was to develop rapid and simple solid phase extraction (SPE) and HPLC methods for simultaneous determination of retinol, gamma- and alpha-tocopherol in human serum using a special auto sampler with micro titration plates.

Separation of vitamins was performed at ambient temperature using monolithic column on a HPLC containing rack changer for micro titration plates. As the mobile phase methanol with flow rate 2.5 mL min?1 was used. The injection volume was 20 µL. Retinol was detected at 325 nm, gamma- and alpha-tocopherol were carried out at 295 nm, respectively. The total time of analysis was 1.8 minutes. Extraction method was developed using Spe-ed 96 C18, 100 mg/2 mL micro titration plates and SPE vacuum manifold. The consumption of the sample was 50 µL. Time of the analysis for 96 samples on one micro titration plate was 1.5 hour. In order to validate the developed method, precision, accuracy, linearity, detection and quantitation limits were evaluated. This method is suitable for rapid automated large-batch analysis of retinol, alpha- and gamma-tocopherol in small sample volumes of human serum.  相似文献   

12.
Existing methods for simultaneous measurements of retinol and alpha-tocopherol in enteral formulas require large sample and solvent volumes and are time-consuming and costly. We have developed a simple, sensitive, cost-effective method for the determination of these vitamins in polymeric diets that can easily be applied to standard quality control of large numbers of samples. Our analytical procedure comprises deproteinization with pure ethanol, saponification with a 3.6M KOH solution in a sonicator for 30min at 65 degrees C under a nitrogen atmosphere, solubilization of samples in phosphate buffer and extraction with hexane. Vitamins are separated by reversed-phase HPLC and quantified by dual-wavelength spectrophotometry. The method gives satisfactory results, with recovery rates of 106.3+/-1.5% for retinol and 102.3+/-1.5% for alpha-tocopherol and RSDs ranging between 1.2 and 4.8% for precision. This method is suitable for the quality control of enteral formulas.  相似文献   

13.
In 1997, the National Institute of Standards and Technology (NIST) released Standard Reference Material (SRM) 2383 Baby Food Composite. This SRM can be used as a control material when assigning values to in-house control materials and when validating analytical methods for the measurement of proximates, vitamins, minerals, and trace elements in baby foods and similar matrixes. The Certificate of Analysis for SRM 2383 provides certified and reference values for concentrations of lutein, zeaxanthin, beta-cryptoxanthin, lycopene, alpha-carotene, beta-carotene, delta-tocopherol, gamma-tocopherol, alpha-tocopherol, retinol, and retinyl palmitate for 2 types of sample preparation--extraction and saponification. The assigned values were based on the agreement of measurements made by NIST and collaborating laboratories. The Certificate of Analysis also provides reference and information values for concentrations of proximates, minerals, and additional vitamins; assignment of these values is discussed in a companion paper (this issue, page 276).  相似文献   

14.
The extraction of carotenoids from Japanese persimmon peels by supercritical fluid extraction (SFE), of which the solvent was CO(2), was performed. In order to enhance the yield and selectivity of the extraction, some portion of ethanol (5 - 20 mol%) was added as an entrainer. The extraction temperature ranged from 313 to 353 K and the pressure was 30 MPa. The effect of temperature on the extraction yield of carotenoids was investigated at 10 mol% of the ethanol concentration in the extraction solvent, and a suitable temperature was found to be 333 K among the temperatures studied with respect to the carotenoid yield. With increasing the entrainer amount from 0 to 10 mol% at a constant temperature (333 K), the carotenoid yield in the extraction was improved, whereas the selectivity of the extracted carotenoids was drastically depressed. We also conducted qualitative and quantitative analyses for the carotenoid components in the extract by HPLC, and analyzed the extraction behavior of each individual carotenoid (alpha-carotene, beta-carotene, beta-cryptoxanthin, lycopene, lutein, and zeaxanthin). The selectivity of each carotenoid changed with the elapsed time and its time evolution was dependent on the carotenoid component, indicating that the location profile and the content can be important factors to understand the SFE behavior of each carotenoid in persimmon peels.  相似文献   

15.
Microalgae have become an important commercial source of carotenoids and microalgae-derived functional foods are consumed by people worldwide. Therefore, an HPLC method was developed to discern the variety and content of carotenoids in the microalga Chlorella pyrenoidosa. The microalga sample was powdered, extracted, saponified and subjected to HPLC analysis. A mobile phase of methanol-acetonitrile-water (84:14:2, v/v/v) (A) and methylene chloride (100%) (B) with the following gradient elution was developed: 100% A and 0% B in the beginning, maintained for 14 min, decreased to 95% A in 25 min, 75% A in 30 min, 74% A in 35 min, 45% A in 50 min and returned to 100% A in 55 min. A total of 32 carotenoids were resolved within 49 min by using a C30 column with flow rate at 1 mL/min and detection at 450 nm. An internal standard beta-apo-8'-carotenal was used to quantify all the carotenoids. All-trans-lutein was present in exceptionally large amount (125034.4 microg/g), followed by cis isomers of lutein (27975.3 microg/g), all-trans-alpha-carotene (2465.8 microg/g), zeaxanthin (2170.3 microg/g), cis isomers of beta-carotene (2159.3 microg/g), all-trans-beta-carotene (2155.0 microg/g), cis isomers of alpha-carotene (1766.7 microg/g), beta-cryptoxanthin (334.9 microg/g), neoxanthin and its cis isomers (199.7 microg/g), neochrome (65.2 microg/g), auroxanthin (38.5 microg/g) and violaxanthin and its cis isomers (38.1 microg/g).  相似文献   

16.
An HPLC method was developed for the simultaneous determination of seven water-soluble vitamins, viz. thiamine, riboflavin, nicotinic acid, nicotinamide, pyridoxine, cyanocobalamin, and folic acid, in multivitamin pharmaceutical formulations and biological fluids (blood serum and urine). Separation was achieved at ambient temperature on a Phenomenex Luna C18 (150 x 4.6 mm) analytical column. Gradient elution was performed starting at a 99:1 A:B v/v composition, where A: 0.05 M CH3COONH4/CH3OH (99/1) and B: H2O/CH3OH (50/50), at a flow rate of 0.8 mL/min. After a 4-min isocratic elution the composition was changed to 100% of B in 18 min and elution continued isocratically for 8 min. Detection was performed with a photodiode array detector at 280 nm. Each vitamin was quantitatively determined at its maximum wavelength. Spectral comparison was used for peak identification in real samples. Detection limits were in the range of 1.6-3.4 ng, per 20-microL injection, while linearity held up to 25 ng/microL. Accuracy, intra-day repeatability (n = 6), and inter-day precision (n = 7) were found to be satisfactory. Theobromine (2 ng/microL) was used as internal standard. Sample preparation of biological fluids was performed by SPE on Supelclean LC-18 cartridges with methanol-water 85/15 v/v as eluent. Extraction recoveries from biological matrices ranged from 84.6% to 103.0%.  相似文献   

17.
A method, using two different systems, is described for the high-performance liquid chromatographic analysis of retinol, retinal, retinoic acid, retinyl acetate, retinyl palmitate, alpha-, beta- and gamma-carotene, beta-apo-6'-, beta-apo-8', beta-apo-10'- and beta-apo-12'-carotenal, ethyl beta-apo-8'-carotenoate, alpha-tocopherol and alpha-tocopheryl acetate. The first system consists of a laboratory-packed Hypersil-ODS 3-microns column and a mobile phase of acetonitrile-methylene chloride-methanol-water (70:10:15:5, v/v). The second system consists of a laboratory-packed Hypersil-ODS 3-microns column and a mobile phase of acetonitrile-methylene chloride-methanol-water (70:10:15:5, v/v). The second system consists of a laboratory-packed Nucleosil C18 3-microns column and a mobile phase of acetonitrile-0.1 M ammonium acetate (80:20, v/v). The detection limits in standard solutions were 10 ng/ml for retinoids and carotenoids and 60 ng/ml for the E vitamers. Analysis of the tissues and plasma of rats, after 2 weeks on a diet supplemented with either beta-carotene or canthaxanthin (both 2 mg/g), led to the conclusion that the rats were able both to transport and store beta-carotene and canthaxanthin and to convert beta-carotene to retinol. Incubation of cytosol preparations from the mucosa of the small intestine of rat with 1 microgram of beta-carotene resulted in the formation of 10-20 ng of retinal within 1 h.  相似文献   

18.
An isocratic high-performance liquid chromatographic method specifically developed to allow simple and rapid determination of retinol concentrations in serum and plasma is reported. Retinol and retinol acetate (the internal standard) are extracted into butanol-ethyl acetate, with no subsequent evaporation step. Separation is achieved on a reversed-phase C-18 column, with a mobile phase consisting of acetonitrile-1% ammonium acetate (89:11), and UV detection at 313 nm. Recoveries of both retinol and the internal standard were 100%, and both compounds were stable in the extraction solvent for at least 2.5 h. Three anticoagulants (oxalate, citrate, EDTA) and perchloric acid (used in some methods to denature protein) all caused losses of retinol. Each run required 9 min; same-day coefficient of variation (C.V.) for identical samples averaged 2.5%; between-day C.V. was 6.4%; sensitivity was better than 10 ng/ml, while clinical concentrations were 400-1200 ng/ml. This method permits simple, rapid, sensitive, precise, and accurate determination of retinol using 0.5 ml serum or heparinized plasma.  相似文献   

19.
Summary An HPLC method has been developed for the determination of fat-soluble vitamins. Ten fat-soluble vitamins were separated simultaneously on a 25 cm×4.6 mm i.d. Hypersil C18 column with acetonitrile-dichloromethane-methanol, 60:20:20 (v/v) as mobile phase at 1.0 mL min−1 with wavelength-programmed ultraviolet-visible-absorbance detection. Total analysis time was 12 min. The limits of detection were 0.03, 0.01, 0.55, 1.84, 0.02, 0.02, 0.01, 0.16, 0.33, 0.01, and 0.01 ng mL−1 for retinol, retinyl acetate, retinyl palmitate, β-carotene, ergocalciferol, cholecalciferol, tocopherol, tocopherol acetate, phylloquinone, menatetrenone, and menadione, respectively. Analysis of human serum 2–7 days after ingestion of oral vitamins and Chinese herbs led to the conclusion that the concentration of vitamins was higher than for control serum.  相似文献   

20.
Carotenoids and vitamins A and E in multivitamin tablets can be determined simultaneously by reversed-phased liquid chromatography (LC) with a programmable UV detector. Samples were dissolved in dimethyl sulfoxide and then extracted with hexane. A portion was injected onto a Symmetry C18, 150 x 4.6 mm id, 5 microns column and chromatographed with a mobile phase of acetonitrile--0.25% ammonium acetate in methanol and 0.05% triethylamine in dichloromethane. A step gradient was used. The system was operated at 25 degrees C with a flow rate of 1.5 mL/min. UV detection was at 325 nm for retinols, 285 nm for tocopherols, and 450 nm for carotenoids. Detection limits were less than 0.3 ng for retinol and retinyl acetate; 2 ng for alpha-tocopherol acid succinate; 10 ng for alpha-tocopherol, gamma-tocopherol, and alpha-tocopherol acetate; and 0.4 ng for alpha-carotene and beta-carotene. Intraday and interday coefficients of variation ranged from 1.40 to 5.20%. The sample preparation method and LC assay are practical for quality control and routine analysis of multivitamin tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号