首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The reaction of warm alcoholic solutions of acetates of CoII, MnII, ZnII and NiII with 2, 6-diacetylpyridine andS-methylisothiosemicarbazide hydrogen iodide yielded the complexes: [Co(H2L)I2]·H2O, [Mn(H2L)(MeOH)2]I2, [Zn(H2L)(MeOH)I]I and [Ni(HL)]I, (H2L=the pentadentate pentaaza-ligand 2, 6-diacetylpyridine bis(S-methylisothiosemicarbazone)). The reaction of methanolic solutions of [Ni(HL)]I and NH4NCS or LiOAc.2H2O, give [Ni(HL)]NCS and NiL, respectively. For the complexes of CoII, MnII and ZnII, a pentagonal bipyramidal configuration is proposed, with H2L in the equatorial plane and two unidentate ligands (I and/or MeOH) in the axial positions. The complexes [Ni(HL)]X (X=I or NCS) and NiL probably have monomeric five- and dimeric six-coordinate structures, respectively, in which only the chelate ligand is involved in coordination.  相似文献   

2.
The title complex salt, (C16H36N)[MnBr(C32H16N8)] or (TBA)[MnIIBr(Pc)] (TBA is tetrabutylammonium and Pc is phthalocyaninate), has been obtained as single crystals by the diffusion technique and its crystal structure was determined using X‐ray diffraction. The high‐spin (S = ) [MnIIBr(Pc)] macrocycle has a concave conformation, with an average equatorial Mn—N(Pc) bond length of 2.1187 (19) Å, an axial Mn—Br bond length of 2.5493 (7) Å and with the MnII cation displaced out of the 24‐atom Pc plane by 0.894 (2) Å. The geometry of the MnIIN4 fragment in [MnIIBr(Pc)] is similar to that of the high‐spin (S = ) manganese(II) tetraphenylporphyrin (TPP) in [MnII(1‐MeIm)(TPP)] (1‐MeIm is 1‐methylimidazole).  相似文献   

3.
    
A one-pot synthesis, that includes CuCl2.2H2O, Na2mnt, H2salph and Mn(CH3COO)3.H2O, leads to the isolation of a trinuclear heterometallic compound [MnIII(salph)(H2O)2CuII(mnt)2].4DMF (1) formed by Mn…S-Cu-S…Mn supramolecular interactions. Compound1 crystallizes in the monoclinic space groupP21/c witha = 13.433(4),b = 16.283(5),c = 15.072(4) ?, Β= 107.785(4)‡, Z = 2. In the crystal structure, the complex anion [CuII(mnt)2]2- bridges two [MnIII(salph)(H2O)]1+ cations through Mn…S contacts. The non-covalent hydrogen bonding and π-π interactions among the trinuclear [MnIII (salph)(H2O)2CuII(mnt)2)] complexes lead to an extended chain-like arrangement of [MnIII(salph) (H2O)]1+ cations with [CuII(mnt)2]2- anions embedded in between these chains.  相似文献   

4.
Synthesis and antibacterial activity of metal complexes of ciprofloxacin   总被引:3,自引:0,他引:3  
The interactions of ciprofloxacin (HCipro) with transition metals have been investigated. Two types of complexes, [M(Cipro)(OAc)(H2O)2] · 3H2O (M = MnII, CoII, CuII or CdII) and [M(Cipro)(OAc)] · 6H2O (M = NiII or ZnII), were obtained and characterized by physicochemical and spectroscopic methods. The i.r. spectra of the complexes suggest that the ciprofloxacin behaves as a monoanionic bidentate ligand. In vitro antibacterial activities of the HCipro and the complexes were tested.  相似文献   

5.
Summary The kinetics of the reaction between H2O2 and some Schiff base complexes of MnIII have been investigated in both aqueous and micellar sodium dodecyl sulphate (SDS) solution. The reaction rate is first order in both H2O2 and [complex], and inversely proportional to [H+]. The second-order rate constant increases in the sequence [Mn(salophen)(OAc)] > [Mn(salen)(OH2)]-ClO4 > [Mn(salen)(OAc)]H2O, where salen = N,N-bis-(salicylidene)ethylenediamine and salophen = N,N-bis-(salicylidene)-o-phenylenediamine. At SDS concentrations below the critical micellar concentration, there is almost no effect on the rate of reaction whereas at higher concentrations the reaction rate increases slightly. A mechanism involving MnII and a peroxo intermediate is proposed.  相似文献   

6.
Four novel mixed‐ligand complexes were obtained from the reaction of maleic acid, diimine chelating ligands and Cd(OH)2 or CdO in a mixed solvent of water and methanol. The complexes were characterized by IR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction. The results show that all the four complexes are coordination polymers. [Cd(phen)(H2O)(male)]n · 2nH2O ( 1 ) and [Cd(bipy)(H2O)(male)]n · 2nH2O ( 2 ) (male = maleate; phen = 1, 10‐phenanthroline, bipy = 2, 2′‐bipyridine) are isomorphic, and the asymmetric unit is constructed by one CdII atom, a maleate group, a diimine ligand and two crystal water molecules. Each maleate group links two CdII atoms in a bis(bidentate) chelating mode, resulting in a 1D helical chain. Within [Cd(phen)(H2O)2(male)]n · 2nH2O ( 3 ), the maleate group bridges two CdII atoms in a bis(monodentate) chelating mode into a 1D helical chain along the [100] direction. The helical chain is decorated by phen groups alternatively at the two sides, and each phen plane of one chain is inserted in the void space between two adjacent phen ligands from an adjacent chain, resulting in a double zipper‐like chain. The asymmetric unit of [Cd2(phen)2(male)2]n ( 4 ) contains a CdII cation, one phen molecule, and a maleate group, and one bridging maleate group links three CdII atoms resulting in a 2D layer extending in [011] plane. The 2D networks are constructed by four kinds of rings formed by the central metal atom and maleate dianion. The thermostabilities of the four complexes were investigated.  相似文献   

7.
New mixed ligand complexes of benzoyldithiocarbazate (H2BDT) have been synthesized and characterized by elemental analyses, spectral studies (i.r., u.v.–vis., mass), thermal analysis and electrical conductivity measurements. The complexes have the general formulae: [M2(BDT)(OX)2] · xH2O; [Co2(BDT)(OX)2(H2O)4]; [M(HBDT)(OX)-(H2O)], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n where M = MnII, NiII and CuII; BDT = dithiocarbazate dianion; OX = 8-hydroxyquinolinate; x = 1 or 2; M = ZnII or CdII; HBDT = dithiocarbazate anion and L = 2,2-bipyridyl or 1,10-o-phenanthroline. For the [M2(BDT)(OX)2] · xH2O, [Co2(BDT)(OX)2(H2O)4], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n complexes, benzoyldithiocarbazate acts as a dibasic-tetradentate ligand in the enol form via the enolic oxygen, the hydrazide nitrogens and the thiolate sulphur, while it acts as a monobasic-tridentate ligand in the keto form in the [M(HBDT)(OX)(H2O)] complexes. The thermal behaviour of the complexes has been studied by t.g.–d.t.g. techniques. Kinetic parameters of the thermal decomposition process have been computed by Coats–Redfern and Horowitz–Metzger methods. It is obvious that the thermal decomposition in the complexes occurs directly at the metal–ligand bonds except for the ZnII and CdII complexes in which decomposition seems to be at a point in the benzoyldithiocarbazate moiety. From the calculated kinetic data it can be concluded that the dehydration processes in all complexes have been described as phase-boundary controlled reactions. The activation energy values reveal that the thermal stabilities of the homobimetallic complexes lie in the order: MnII < NiII < CoII, while the monomeric CdII complex has more enhanced thermal stability than the ZnII complex.  相似文献   

8.
The formation and structural aspects of some metal complexes of thiosalicylic acid (TSA) were studied. The μ‐bridging tetra‐coordinated Ru complex, [Ru(C6H4(CO2)(μ‐S)(H2O)]2 ( 1 ) was formed by hydrothermal reaction of TSA with RuCl3. The complexes [M(dtdb)(phen)(H2O)]n ( 2 – 4 ) (M = ZnII, CoII, NiII, dtdb = 2,2′‐dithiodibenzoate anion, phen = 1,10‐phenanthroline) were obtained by the slow diffusion technique and the in situ S–S bond formation was confirmed by elemental, spectral and X‐ray analysis. Reaction of TSA with CuCl2 and 2,2′‐bipyridine (bipy) under the slow diffusion technique yielded the dimer [Cu(tdb)(bipy)] ( 5 ) (tdb = thiodibenzoic acid), where the in situ generation of 2,2′‐thiodibenzoic acid was observed.  相似文献   

9.
The title compound, [Mn(C12H8N2)2(H2O)2](C4H4O4S)·[Mn(C4H4O4S)(C12H8N2)2]·13H2O, contains one dianion of thio­diglycolic acid (tdga2−) and two independent man­ganese(II) moieties, viz. [Mn(phen)2(H2O)2]2+ and [Mn(tdga)(phen)2], where phen is 1,10‐phenanthroline. The MnII atoms are octahedrally coordinated by four N atoms of two bidentate phen ligands [Mn—N = 2.240 (2)–2.3222 (19) Å] and either two water O atoms or two tdga carboxyl O atoms [Mn—O = 2.1214 (17)–2.1512 (17) Å]. The tdga ligand chelates as an O,O′‐bidentate ligand, forming an eight‐membered ring with one Mn atom. The free tdga2− dianion is hydrogen bonded to an [Mn(phen)2(H2O)2]2+ ion, with O⋯O distances of 2.606 (2) and 2.649 (2) Å. The crystal structure is further stabilized by an extensive network of hydrogen bonds involving 13 water mol­ecules.  相似文献   

10.
The coordination compounds of CrIII, MnII and CoII metal ions derived from quinquedentate 2,6-diacetylpyridine derivative have been synthesized and characterized by using the various physicochemical studies like stoichiometric, molar conductivity and magnetic, and spectral techniques like IR, NMR, mass, UV and EPR. The general stoichiometries of the complexes are found to be [Cr(H2L)X] and [M(HL)X], where M = Mn(II) and Co(II); H2L = dideprotonated ligand, HL = monodeprotonated ligand and X = NO3, Cl and OAc. The studies reveal that the complexes possess monomeric compositions with six coordinated octahedral geometry (CrIII and MnII complexes) and six coordinated tetragonal geometry (CoII complexes).  相似文献   

11.
Yang  Jin  Ma  Jian-Fang  Wu  Dong-Mei  Guo  Li-Ping  Liu  Jing-Fu 《Transition Metal Chemistry》2003,28(7):788-793
Three new compounds, namely [Mn(phen)2(L)2] · EtOH (1), [Zn(phen)2(H2O)2]2L · 6H2O (2) and [Cd(phen)2(H2O)2]2L · 6H2O (3), where HL = 4-methylbenzenesulfonic acid and phen = o-phenanthroline, have been synthesized, and their crystal structures determined by X-ray diffraction. In the complexes the metal atoms have two different coordination environments. Complex (1) consists of neutral molecules, [Mn(phen)2(L)2], in which MnII is six-coordinated by four nitrogen atoms from two o-phenanthroline molecules and two oxygen atoms from two sulfonate ions. Complexes (2) and (3) are isomorphous, each consisting of cationic species [M(phen)2(H2O)2]2+ [M = Zn (2), Cd (3)], in which MII is six-coordinated by four nitrogen atoms from two o-phenanthroline molecules and two water molecules. The electrochemical behavior and FT-IR of these compounds were also studied in detail.  相似文献   

12.
Reaction of 2,2′-bipyridine (2,2′-bipy) or 1,10-phenantroline (phen) with [Mn(Piv)2(EtOH)]n led to the formation of binuclear complexes [Mn2(Piv)4L2] (L = 2,2′-bipy (1), phen (2); Piv is the anion of pivalic acid). Oxidation of 1 or 2 by air oxygen resulted in the formation of tetranuclear MnII/III complexes [Mn4O2(Piv)6L2] (L = 2,2′-bipy (3), phen (4)). The hexanuclear complex [Mn6(OH)2(Piv)10(pym)4] (5) was formed in the reaction of [Mn(Piv)2(EtOH)]n with pyrimidine (pym), while oxidation of 5 produced the coordination polymer [Mn6O2(Piv)10(pym)2]n (6). Use of pyrazine (pz) instead of pyrimidine led to the 2D-coordination polymer [Mn4(OH)(Piv)72-pz)2]n (7). Interaction of [Mn(Piv)2(EtOH)]n with FeCl3 resulted in the formation of the hexanuclear complex [MnII4FeIII2O2(Piv)10(MeCN)2(HPiv)2] (8). The reactions of [MnFe2O(OAc)6(H2O)3] with 4,4′-bipyridine (4,4′-bipy) or trans-1,2-(4-pyridyl)ethylene (bpe) led to the formation of 1D-polymers [MnFe2O(OAc)6L2]n·2nDMF, where L = 4,4′-bipy (9·2DMF), bpe (10·2DMF) and [MnFe2O(OAc)6(bpe)(DMF)]n·3.5nDMF (11·3.5DMF). All complexes were characterized by single-crystal X-ray diffraction. Desolvation of 11·3.5DMF led to a collapse of the porous crystal lattice that was confirmed by PXRD and N2 sorption measurements, while alcohol adsorption led to porous structure restoration. Weak antiferromagnetic exchange was found in the case of binuclear MnII complexes (JMn-Mn = −1.03 cm−1 for 1 and 2). According to magnetic data analysis (JMn-Mn = −(2.69 ÷ 0.42) cm−1) and DFT calculations (JMn-Mn = −(6.9 ÷ 0.9) cm−1) weak antiferromagnetic coupling between MnII ions also occurred in the tetranuclear {Mn4(OH)(Piv)7} unit of the 2D polymer 7. In contrast, strong antiferromagnetic coupling was found in oxo-bridged trinuclear fragment {MnFe2O(OAc)6} in 11·3.5DMF (JFe-Fe = −57.8 cm−1, JFe-Mn = −20.12 cm−1).  相似文献   

13.
Reaction of CuII salts with phenanthroline and oxalate (ox) or oxamate (oxm) gives [Cu(phen)(ox)(H2O)] · H2O or [Cu(phen)(oxm)(H2O)] · H2O complexes while direct treatment of CuII salts with oxalate or oxamate gives [NH4]2[Cu(ox)2] and [Cu(oxm)2(H2O)2] respectively. The X-ray structures of one example of each system, aquo-oxamato-phenanthroline-copper(II)-dihydrate and the polymeric ammonium-bis(aquo)-tetraoxalato-dicopper(II)-dihydrate, are reported.  相似文献   

14.
Three 3‐amino‐1, 2, 4‐triazole (atz)‐based paramagnetic complexes, [Mn(atz)(pa)]n ( 1 ), {[Mn(atz)1.5(hip)] · H2O}n ( 2 ), and [Mn(H2O)2(atz)2(nb)2] ( 3 ) (H2pa = o‐phthalic acid, H2hip = 5‐hydroxylisophthalic acid, and Hnb = p‐nitrobenzoic acid) were prepared by introducing different carboxylate‐containing aromatic coligands, and structurally and magnetically characterized. Helical MnII‐atz and bent MnII‐pa2– chains are crosslinked by sharing the same metal sites to generate a honeycomb‐shaped framework of 1 . The undulated MnII‐atz layers constructed from 22‐member metallomacrocycles are periodically supported by ditopic hip2– ligands to lead to a pillared‐layer structure of 2 . In contrast, complex 3 is a centrosymmetric mononuclear entity, which is assembled into a three‐dimensional supramolecular network by abundant hydrogen‐bonding interactions. The structural difference of 1 – 3 is significantly due to the combinations of the flexible coordination modes adopted by the mixed atz and carboxylate groups. Weak and comparable antiferromagnetic couplings are observed in the nearest neighbors of 1 – 3 , which are cooperatively transmitted either by short carboxylate and/or atz heterobridges or by weak non‐covalent interactions.  相似文献   

15.
The electrochemical and spectroscopic properties of [Mn2(tpp)2(SO4)] (H2tpp=tetraphenylporphyrin=5,10,15,20‐tetraphenyl‐21H,23H‐porphine) were studied to characterize the stability of this compound as a function of solvent, redox state, and sulfate concentration. In non‐coordinating solvents such as 1,2‐dichloroethane, the dimer was stable, and two cyclic voltammetric waves were observed in the region for MnIII reduction. These waves correspond to reduction of the dimer to [MnII(tpp)] and [MnIII(tpp)(OSO3)]?, and reduction of [MnIII(tpp)(OSO3)]? to [MnII(tpp)(OSO3)]2?, respectively. In the coordinating solvent DMSO, [Mn2(tpp)2(SO4)] was unstable and dissociated to form [MnIII(tpp)(DMSO)2]+. A single voltammetric wave was observed for MnIII reduction in this solvent, corresponding to formation of [MnII(tpp)(DMSO)]. In non‐coordinating solvent systems, addition of sulfate (as the bis(triphenylphosphoranylidene)ammonium (PPN+) salt) resulted in dimer dissociation, yielding [MnIII(tpp)(OSO3)]?. Reduction of this monomer produced [MnII(tpp)(OSO3)]2?. In DMSO, addition of SO led to displacement of solvent molecules forming [MnIII(tpp)(OSO3)]?. Reduction of this species in DMSO led to [MnII(tpp)(DMSO)].  相似文献   

16.
A MnII chelating dendrimer was prepared as a contrast agent for MRI applications. The dendrimer comprises six tyrosine‐derived [Mn(EDTA)(H2O)]2? moieties coupled to a cyclotriphosphazene core. Variable temperature 17O NMR spectroscopy revealed a single water co‐ligand per MnII that undergoes fast water exchange (kex=(3.0±0.1)×108 s?1 at 37 °C). The 37 °C per MnII relaxivity ranged from 8.2 to 3.8 mM ?1 s?1 from 0.47 to 11.7 T, and is sixfold higher on a per molecule basis. From this field dependence a rotational correlation time was estimated as 0.45(±0.02) ns. The imaging and pharmacokinetic properties of the dendrimer were compared to clinically used [Gd(DTPA)(H2O)]2? in mice at 4.7 T. On first pass, the higher per ion relaxivity of the dendrimer resulted in twofold greater blood signal than for [Gd(DTPA)(H2O)]2?. Blood clearance was fast and elimination occurred through both the renal and hepatobiliary routes. This MnII containing dendrimer represents a potential alternative to Gd‐based contrast agents, especially in patients with chronic kidney disease where the use of current Gd‐based agents may be contraindicated.  相似文献   

17.
A new 3D MnII metal‐organic framework compound {Mn(phen)(dcbp)}n (H2dcbp = 4,4‐dicarboxy‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) was isolated under hydrothermal conditions and structurally characterized. In the compound, the dcbp ligand is deprotonated to give a neutral species (metal:ligand with 1:1 stoichiometry). Along the c axis, the neighboring MnII ions are linked by two carboxylate bridges in µ2‐coordinating mode to generate a 1D zigzag chain, and these chains are interlinked by dicarboxylate groups of long dcbp ligands to generate a 3D (4,4)‐connected structure with the (42.84) net topology. IR and UV/Vis spectroscopy and variable temperature magnetic susceptibility measurements were made, which indicated weak antiferromagnetic interactions between the MnII ions of the compound.  相似文献   

18.
The title complex [Mn2(phen)4(FCA)2](ClO4)2·H2O (1) (FCA = dianion of 3-ferrocenyl-2-crotonic acid, phen = 1,10-phenanthroline) has been prepared, and its structure determined by single crystal X-ray diffraction analysis. The structure consists of a dinuclear cation [Mn2(phen)4(FCA)2]2+, non-coordinated perchlorate anions and a water molecule. The two MnII ions are separated by 4.374 Å in the cation and are dicarboxylate-bridged by carboxylate ligands containing ferrocenyl units. Each FCA is bound to two MnII ions through carboxylate oxygens with the synanti bridging mode. The MnII ion is coordinated in an octahedral N4O2 geometry by two chelate phen ligands and two -carboxylate oxygen atoms. Electrochemical properties of (1) are discussed.  相似文献   

19.
Details of the reaction sequence used for the fluorimetric detection of phosphates by disassembly of transition metal Schiff base complexes were investigated for [FeIII(salen)(H2O)]+, [ZnII(salen)], [MnII(salen)(H2O)2], and [MnIII(salen)(H2O)]+. The reactivity of these compounds towards phosphorus oxoanions of differing charge, number of donor atoms and steric hindrance was detected by UV/Vis and fluorescence spectroscopy in both aprotic organic and aqueous media. Selectivity of [FeIII(salen)(H2O)]+ towards pyrophosphate over all other tested phosphorus-containing analytes was strongly supported. [ZnII(salen)] showed a faster reactivity but was much less selective. In contrast, [MnIII(salen)(H2O)]+ proved to be more stable than the iron complex but generally showed little reactivity towards phosphorus oxoanions. The influence of the charge of the central atom was investigated using the MnII analogue [MnII(salen)(H2O)2]. As expected, the reduced charge resulted in a reactivity comparable to the ZnII complex in organic solution but lead to hydrolysis of the complex in water. Finally, the reaction products of [FeIII(salen)(H2O)]+ with phosphates were characterized by IR spectroscopy and mass spectrometry, providing further insights into the reaction mechanism of the disassembly process.  相似文献   

20.
Summary Complexes of transition metals with acetoacetanilide thiosemicarbazone, AatH2, have been prepared and characterized. The complexes were found to have the following stoichiometries: [Mn(Aat)(H2O)2]n; [Zn(Aat)(H2O)2]; [M(Aat)(H2O)], where M = CdII or HgII; [Cu(Aat)]n; [Ag(AatH)]; [M(AatH)2], where M = CoII or NiII, and [Fe(Aat)Cl(H2O)]n. The compounds have been studied for their possible antitumour activity against Ehrlich Ascites tumour cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号