首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu substituted Ni-Li spinel ferrites were prepared by a conventional sol-gel auto-combustion method. The structure, surface morphology, dielectric and magnetic properties were investigated by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, impedance spectroscopy and vibrating sample magnetometer, respectively. X-ray diffraction studies reveal the single phase spinel structure of the ferrites and the crystallite size varies from 23 to 35 nm. Incorporation of Cu in the Ni-Li ferrites increases the grain size. The dielectric parameters such as ε´, ε′′, loss tan δ and ac conductivity (σac) have been measured for the annealed samples in the temperature range from 35 to 200 °C and over the frequency range from 101 to 107 Hz. The saturation magnetization and coercivity show a dependence on the composition and microstructure. The values of saturation magnetization vary from 25.6 to 33.6 emu/g with increase in x for samples annealed at 600 °C. The values of the coercivity increase from 170 to 203 Oe with increase in x.  相似文献   

2.
Polycrystalline ferrites with general formula Co0.5CdxFe2.5−xO4 (0.0?x?0.5) were prepared by sol-gel method. The dielectric properties ε′, ε″, loss tangent tan δ and ac conductivity σac have been studied as a function of frequency, temperature and composition. The experimental results indicate that ε′, ε″, tan δ and σac decrease as the frequency increases; whereas they increase as the temperature increases. These parameters are found to increase by increasing the concentration of Cd content up to x=0.2, after which they start to decrease with further increase in concentration of Cd ion. The dielectric properties and ac conductivity in studied samples have been explained on the basis of space charge polarization according to Maxwell and Wagner's two-layer model and the hoping between adjacent Fe2+ and Fe3+ as well as the hole hopping between Co3+and Co2+ ions at B-sites. The values of activation energies Ef for conduction process are determined from Arrhenius plots, and the variations in these activation energies as a function of Cd content are discussed. The complex impedance analysis is used to separate the grain and grain boundary of the system Co0.5CdxFe2.5−xO4. The variations of both grain boundary and grain resistances with temperature and composition are evaluated in the frequency range 42 Hz-5 MHz.  相似文献   

3.
Polycrystalline soft ferrite samples with general formula ZnNdxFe2−xO4 (where x=0, 0.01, 0.02 and 0.03) were synthesized by oxalate co-precipitation method. The samples were characterized by XRD and SEM techniques. The single phase cubic spinel structure of all the samples was confirmed by XRD. The lattice constant and grain size of the samples are found to decrease with increase in Nd3+ content. Room temperature DC resistivity of the Nd3+ substituted zinc ferrites is 102 times higher than that of zinc ferrite. The dielectric constant (ε′) and dielectric loss (tan δ) of all the samples were measured in the frequency range 20 Hz-1 MHz. The dielectric behaviour is attributed to the Maxwell-Wagner type interfacial polarization. The dielectric loss of the samples is found to decrease with increase in Nd3+ content. High resistivity and low dielectric loss makes these ferrites particularly suitable for high frequency applications.  相似文献   

4.
We investigated the influence of lithium potassium zirconate (LiKZrO3) nanoparticles on the electrical properties and structural characteristics of poly(vinyl alcohol) (PVA) films. PVA/LiKZrO3 nanocomposite films were prepared by casting of aqueous solutions with varying LiKZrO3 content (0.5, 1.0, and 2.0 wt.%). The dielectric constant (ε′), dielectric loss (ε″), AC conductivity (σac), dielectric loss tangent (tan δ), and electric modulus (M′ and M″) of the nanocomposite films were measured over a range of frequencies at ambient temperature. The results show increases in σac and M′ with frequency, whereas ε′, ε″, and tan δ decreased with increasing frequency. The films were also characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) techniques. DSC and XRD revealed the nature of LiKZrO3 nanoparticle interaction with the PVA matrix. TGA analysis revealed an increase in thermal stability of the nanocomposites with increasing nanoparticle concentration. Scanning electron microscopy confirmed uniform dispersion of LiKZrO3 nanoparticles in the PVA matrix.  相似文献   

5.
AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε′) and dielectric loss (ε″) were measured. The Cole–Cole diagram determined complex impedance for different temperatures.  相似文献   

6.
Dielectric properties, viz. dielectric constant ε′, loss tan δ and a.c conductivity σac (over a wide range of frequency and temperature) and dielectric breakdown strength of PbO-Sb2O3-As2O3 glasses doped with V2O5 (ranging from 0 to 0.5 mol%) are studied. Analysis of these results, based on optical absorption and ESR spectra, indicates that the insulating strength of the glasses is comparatively high when the concentration of V2O5 is about 0.3 mol% in the glass matrix.  相似文献   

7.
Nano-structure pure barium titanate (BaTiO3) and that was doped with iron oxide (Fe2O3), have been prepared by sol-gel method, using barium acetate (Ba(Ac)2) and titanium butoxide (Ti(C4H9O)4), as precursors. The as-grown prepared samples by sol-gel technique were found to be amorphous, which crystallized to the tetragonal phase after synthesized at 750 °C in air for 1 h as detected from the XRD patterns. The XRD data were confirmed by transmission electron microscope (TEM). The dielectric properties namely; dielectric constant (ε′) and loss tangent (tan δ) in the frequency range between 42 Hz and 1 MHz, at range of temperature 25-250 °C were investigated. The temperature dependence of ε′ and tan δ for the undoped and doped materials, at 1 kHz, was also investigated. As a result, tan δ increased rapidly with decreasing temperature below 125 °C (Curie temperature) while above this temperature, tan δ shows temperature independent. As a result, below and above Curie temperature, ferroelectric phase and paraelectric phase of BaTiO3 can be obtained, respectively.  相似文献   

8.
The new spinel-type of general formula Ni0.6+xZn0.2Cu0.2VxFe2−2xO4 with 0.0≤x≤0.25 was synthesized by the usual ceramic method. Structure of the prepared ferrites was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Room temperature magnetic hysteresis loops were measured using magnetic field strength up to 6 kOe. Saturation magnetization (Ms) increased with vanadium content up to x=0.05 and then decreased. Variation of (Ms) as a function of x is explained in terms of cation redistribution between A and B sublattices. Coercive force (Hc), remanent induction (Br) and squareness of the hysteresis loop (Br/Ms) as functions of x are presented. Dielectric permittivity (ε′, ε″) and dielectric loss tangent (tan δ) were measured as functions of frequency and temperature. These parameters were found to be strongly dependent on V2O5 concentration. The variation of dielectric loss tangent with frequency at different temperatures shows abnormal behavior, where more than one relaxation peaks were observed at low and high temperatures. This behavior could be attributed to the collective contribution of two types of carriers (p and n) to polarization.  相似文献   

9.
The dielectric properties of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ superconductor samples were studied at 79 and 290 K by means of capacitance (C) and conductance (G) measurements with the test frequency (f) in the range of 10 kHz to 10 MHz. A negative capacitance (NC) phenomenon has been observed, which is most likely arising due to higher Fermi level of ceramic superconductor samples than metal electrodes. Also the NC may be due to the space charge located at the multiple insulator–superconductor interfaces (grain boundaries) in the materials. The negative dielectric constant (ε′) and loss factor (tan δ) show strong dispersion at low frequencies. The lower thermal agitation at 79 K may enhance the polarizability and hence the dielectric constants (ε′ and ε″).  相似文献   

10.
Films of PVA/PVP blend (50/50) filled with different concentrations of NiCl2 were prepared by casting method. The prepared films were investigated by different techniques. XRD scans demonstrated that the peak intensity at 2θ≈20° decreased and the band width increased with increase in the concentrations of NiCl2 content, which implied decrease in the degree of crystallization and hence causes increase in the amorphous region. UV-vis analysis revealed that the values of the optical band gap are affected with increase in NiCl2 content. This indicates the formation of charge transfer complexes between the polymer blend and the filler. The rise of conductivity is significant with increased concentration of NiCl2 filler; this reveals an increase in degree of amorphosity. AC conductivity (σac) behavior of all the prepared films was investigated over the frequency range 42 Hz-5 MHz and under different isothermal stabilization in the temperature range 313-393 K. It suggests that the hopping mechanism might be playing an important role in the conduction process in high frequency region. The dielectric behavior was analyzed using dielectric permittivity (ε´, ε″) dielectric loss tangent (tan δ) and electric modulus (M″). The decrease in dielectric permittivity was observed with increase in the concentration of NiCl2 filler. This suggests the role of NiCl2 as filler to improve the electrical conductivity of PVA/PVP blend.  相似文献   

11.
In this study, frequency and voltage dependence of dielectric constant (ε′), dielectric loss (ε″), loss tangent (tanδ), the real and imaginary parts of electric modulus (M′ and M″) and ac electrical conductivity (σ ac) of an Au/PVA (Bi-doped)/n-Si Schottky barrier diode have been investigated in detail by using experimental CV and GV measurements in the wide frequency range of 5 kHz–10 MHz and the voltage range of ±2 V at room temperature. Experimental results indicate that the values of ε′,ε″, tanδ and σ ac are strongly frequency and voltage dependent. It has found that the values of ε′,ε″ and tanδ decrease while the values of σ ac, M′ and M″ increase. It is clear that the values of M″ show a distinctive peak with a U-shape and its position shifts towards the positive-bias region with increasing frequency. Such behavior of the peak can be attributed to the particular distribution of interface states located at the Si/PVA interface and interfacial polarization. It can be concluded that the interfacial polarization and the charge at the interface can easily follow the ac signal at low frequencies.  相似文献   

12.
A sol-gel combustion method has been successfully employed for the synthesis of Sr-hexaferrite nanomaterials doped with Er3+ and Ni2+ at strontium and iron sites, respectively. The X-ray diffraction analysis confirmed the single magnetoplumbite phase and the crystallite size was found to be in the range of 14-16 nm, suitable for obtaining signal-to-noise ratio in the high density recording media. The magnetic properties such as saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) were calculated from hysteresis loops. Ms, Mr and Hc are observed to increase with the Er-Ni content. The dielectric constant (ε´) and dielectric loss (tan δ) is found to decrease with the increase in frequency and is explained on the basis of Maxwell-Wagner and Koops theory. The decrease in dielectric constant and dielectric loss but increase in saturation magnetization and remanence with Er-Ni content suggests that the materials are suitable for applications in microwave devices and high density recording media .  相似文献   

13.
The complex perovskite oxide In(Mg1/2Ti1/2)O3 (IMT) is synthesized by a solid state reaction technique. The X-ray diffraction of the sample at 30 °C shows a monoclinic phase. The dielectric properties of the sample are investigated in the temperature range from 143 to 373 K and in the frequency range from 580 Hz to 1 MHz using impedance spectroscopy. An analysis of the dielectric constant ε′ and loss tangent (tan δ) with frequency is performed assuming a distribution of relaxation times. The Cole-Cole model is used to explain the relaxation mechanism in IMT. The scaling behavior of imaginary part of electric modulus (M″) shows that the relaxation describes the same mechanism at various temperatures. The electronic structure and hence the ground state properties of IMT is studied by X-ray photoemission spectroscopy (XPS). The valence band XPS spectrum is compared with the electronic structure calculation. The electronic structure calculation indicates that the In-5s orbital introduces a significant density of states at the Fermi level, which is responsible for a high value of conductivity in IMT.  相似文献   

14.
ZnO-ZnF2-B2O3 glasses containing small concentrations of TiO2 ranging from 0 to 0.6 mol% were prepared. Dielectric properties (constant ε′, loss tan δ, ac conductivity σac over a moderately wide range of frequency and temperature at room temperature in air medium) of these glasses have been studied. The results of these studies were analyzed with the aid of data on optical absorption, ESR and IR spectra of these glasses. The analysis suggests that when the concentration of TiO2>0.2 mol%, the titanium ions, in addition to Ti4+ state, co-exist in Ti3+ state, act as modifiers and reduce the breakdown strength.  相似文献   

15.
The present paper reports the effect of Pb impurity (low ∼2 at% and high ∼10 at%) on the ac conductivity (σac) of a-Ge20Se80 glass. Frequency-dependent ac conductance and capacitance of the samples over a frequency range ∼100 Hz to 50 kHz have been taken in the temperature range ∼268 to 358 K. At frequency 2 kHz and temperature 298 K, the value of σac increases at low as well as at higher concentration of Pb. σac is proportional to ωs for undoped and doped samples. The value of frequency exponent (s) decreases as the temperature increases. The static permittivity (εs) increases at both Pb concentrations. These results have been explained on the basis of some structural changes at low and higher concentration of Pb impurity.  相似文献   

16.
Y2.6−xCa0.4+xZrxV0.2Fe4.8−xO12 (Zrx:YCaVIG) ferrite materials have been prepared by an oxide process. The phase formation and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The effects of Zr4+ substitution on phase compositions, sintering properties, microstructures and electromagnetic properties were investigated. The results indicate that all the sintered specimens with different Zr4+ contents show a single garnet structure. The addition of ZrO2 can gradually increase the lattice constant, and lower the sintering temperature and the theoretical density. With the increase of Zr4+ content, the dielectric loss (tan δε) and coercivity (Hc) decrease and then slightly increase, which is due to the variation of the microstructure. But the saturation magnetization (4πMs) shows the opposite variation compared to the former two properties. However, the dielectric constant (εr) remains stable and remanence (Br) monotonically declines. Finally, the specimen of Y2.3Ca0.7Zr0.3V0.2Fe4.5O12 sintered at 1350° possesses the optimum electromagnetic properties: εr=14.8, tan δε=1.35×10−3, 4πMs=1638 Gs, Br=596 Gs, Hc=0.75 Oe and ΔH (ferromagnetic resonance linewidth)=66 Oe.  相似文献   

17.
Pr3+-doped Ni-Zn ferrites with a nominal composition of Ni0.5Zn0.5PrxFe2−xO4 (where x=0-0.08) were prepared by a one-step synthesis. The magnetic and dielectric properties of the as-prepared Ni-Zn ferrites were investigated. X-ray diffraction data indicated that, after doping, all samples consisted of the main spinel phase in combination of a small amount of a foreign PrFeO3 phase. The lattice constants of the ferrites initially increased after Pr3+ doping, but then became smaller with additional Pr3+ doping. The addition of Pr3+ resulted in a reduction of grain size and an increase of density and densification of the as-prepared samples. Magnetic measurement revealed that the saturation magnetization of the as-prepared ferrites, Ms, decreased, while the coercivity, Hc, increased with increasing substitution level, x, and the Curie temperature, Tc, kept a rather high value, fluctuating between 308 and 320 °C. Both the real and imaginary parts of permeability of the ferrites decreased slightly after Pr3+ doping. However, the natural resonance frequency shifted towards higher frequency from 13.07 to 36.17 MHz after the addition of Pr3+, driving the magnetic permeability to much higher frequency, reaching the highest value (36.17 MHz) when x=0.04. Introduction of Pr3+ ions into the Ni-Zn ferrite reduced the values of the dielectric loss tangent, especially in the frequency range of 1-400 MHz. However, the magnitude of dielectric loss of the samples doped with different amounts of Pr3+ raised little.  相似文献   

18.
In this paper Mössbauer, Raman and dielectric spectroscopy studies of BiFeO3 (BFO) ceramic matrix with 3 or 10 wt% of Bi2O3 or PbO added, obtained through a new procedure based on the solid-state method, are presented. Mössbauer spectroscopy shows the presence of a single magnetically ordered phase with a hyperfine magnetic field of 50 T. Raman spectra of BFO over the frequency range of 100-900 cm−1 have been investigated, at room temperature, under the excitation of 632.8 nm wavelength in order to evaluate the effect of additives on the structure of the ceramic matrix. Detailed studies of the dielectric properties of BiFeO3 ceramic matrix like capacitance (C), dielectric permittivity (ε) and dielectric loss (tan δ), were investigated in a wide frequency range (1 Hz-1 MHz), and in a temperature range (303-373 K). The complex impedance spectroscopy (CIS) technique, showed that these properties are strongly dependent on frequency, temperature and on the added level of impurity. The temperature coefficient of capacitance (TCC) of the samples was also evaluated. The study of the imaginary impedance (−Z″) and imaginary electric modulus (M″) as functions of frequency and temperature leads to the measurement of the activation energy (Eac), which is directly linked to the relaxation process associated with the interfacial polarization effect in these samples.  相似文献   

19.
Single phase perovskite CaTiO3 has been synthesized by conventional solid state reaction technique. The ceramic was characterized by XRD at room temperature and its Rietveld refinement inferred orthorhombic crystal structure with the space group Pbnm. The field dependence of dielectric relaxation and conductivity was measured over a wide frequency range from room temperature to 673 K. Analysis of Nyquist plots of CaTiO3 revealed the contribution of many electrically active regions corresponding to bulk mechanism, distribution of grain boundaries and electrode processes. The dc conductivity depicted a semiconductor to metal type transition. Frequency dependence of dielectric constant (ε′) and tangent loss (tan δ) show a dispersive behavior at low frequencies and is explained on basis of Maxwell-Wagner model and Koop's theory. Both conductivity and electric modulus formalisms have been employed to study the relaxation dynamics of charge carriers. The variation of ac conductivity with frequency at different temperatures obeys the universal Jonscher's power law (σac α ωs). The values of exponent ‘s’ lie in the range 0.13 ≤ s ≤ 0.33, which in light of CBH model suggest a large polaron hopping type of conduction mechanism.  相似文献   

20.
《Current Applied Physics》2010,10(4):1013-1016
The LiCoVO4 compound is synthesized by solution-based chemical method. X-ray diffraction analysis exhibits a single phase nature of the compound with cubic structure. The dielectric constant (εr), tangent loss (tanδ) and a.c. conductivity (σac) have been studied as a function of frequency and temperature using complex impedance spectroscopy (CIS) technique. The variation of (εr and tanδ) with frequency at studied temperatures shows a dispersive behavior at low frequencies. Frequency dependence of σac at different temperatures obeys Jonscher’s universal power law governed by the relation: σac = σdc + n, where n is the frequency exponent in the range of 0  n  1 and A is a constant that depends upon temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号