首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of Cr doping on Mn sites in the electron-doped manganites La0.9Te0.1MnO3 have been studied by preparing the series La0.9Te0.1Mn1−xCrxO3 (0.05≤x≤0.20). Upon Cr doping, both the Curie temperature TC and magnetization M are suppressed. The resistivity measurements indicate that there exists a weak metal-insulator (M-I) transition for the sample with x=0.05, with an increase in the doping level, the M-I transition disappears and the resistivity increases. Thermopower S(T) exhibits a maximum near TC for all samples. By fitting the S(T) and ρ(T) curves, it is found that the temperature dependences of both S(T) and ρ(T) in the high temperature paramagnetic (PM) region follow the small polaron conduction (SPC) mechanism for all samples. The fitting parameters obtained imply changes of both the average-hopping distance of the polarons and the polaron concentration with Cr doping in our studied samples. In the case of the thermal conductivity κ(T), the variation of κ(T) is analyzed based on the combined effects due to the suppression of the local Mn3+O6 Jahn-Teller (JT) lattice distortion because of the substitution of Cr3+ for Mn3+ ions, which results in the increase in κ, and the introduction of the disorder due to Cr-doping, which contributes to the decrease in κ.  相似文献   

2.
The structural, magnetic and transport properties of the antiperovskite AlCxMn3 (1.0≤x≤1.4) are investigated. It is found that the lattice parameter a increases monotonously with nominal carbon concentration x. The Curie temperature TC increases with increasing x from 1.0 to 1.1 and then decreases with further increasing x. The highest TC value is 364 K, about 70 K higher than that of stoichiometric AlCMn3 reported previously. This may be attributed to a competition between the lattice expansion and the strong Mn 3d-C 2p hybridization. Below 100 K, the resistivity can be well described as ρ(T)=ρ0+AT2, corresponding to the electron-electron scattering. A increases with x, suggesting certain changes in the electronic structure, e.g. carrier density. Above 250 K, all ρ(T) curves depart from the linear dependence on temperature and seem to take on a tendency towards saturation.  相似文献   

3.
Systematic studies of resistivity, thermoelectric power, and thermal conductivity have been performed on polycrystalline bilayered manganites LaSr2Mn2−xCrxO7 (0≤x≤0.2). It is found that the temperature dependence of both Seebeck coefficient S(T) and resistivity ρ(T) in the high temperature region follows the small polaron transport mechanism for all the samples. But in the low temperature region, variable-range-hopping (VRH) model matches the experimental data better. In addition, the maximum of absolute S(T) at low temperatures is gradually suppressed for the sample with Cr-doping level of x>0.04, implying that a new FM order probably arises. With decreasing the temperatures further, S(T) has a sign change and becomes positive for the sample with Cr-doping level of x>0.04, indicating that there may occur a variation of the type of charge carrier. As to thermal conduction κ(T), the low-temperature peak is suppressed due to Cr-doping. The variation of κ(T) is analyzed based on the combined effect due to the suppression of local Mn3+O6 Jahn-Teller (JT) lattice distortion because of the substitution of Cr3+ ions for Mn3+ ions, which results in the increase in thermal conduction, and the introduction of the disorder due to Cr-doping, which contributes to the decrease in thermal conduction.  相似文献   

4.
The effect of Ce-doping on structural, magnetic, electrical and thermal transport properties in hole-doped manganites La0.7−xCexCa0.3MnO3 (0.0≤x≤0.7) is investigated. The structure of the compounds was found to be crystallized into orthorhombically distorted perovskite structure. dc Susceptibility versus temperature curves reveal various magnetic transitions. For x≤0.3, ferromagnetic regions (FM) were identified and the magnetic transition temperature (TC) was found to be decreasing systematically with increasing Ce concentration. The electrical resistivity ρ(T) separates the well-define metal-semiconducting transition (TMS) for low Ce doping concentrations (0.0≤x≤0.3) consistent with magnetic transitions. For the samples with 0.4≤x≤0.7, ρ(T) curves display a semiconducting behavior in both the high temperature paramagnetic (PM) phase and low temperature FM or antiferromagnetic phase. The electron–phonon and electron–electron scattering processes govern the low temperature metallic behavior, whereas small polaron hopping model is found to be operative in PM phases for all samples. These results were broadly corroborated by thermal transport measurements for metallic samples (x≤0.3) in entire temperature range we investigated. The complicated temperature dependence of Seebeck coefficient (S) is an indication of electron–magnon scattering in the low temperature magnetically ordered regime. Specific heat measurements depict a broadened hump in the vicinity of TC, indicating the existence of magnetic ordering and magnetic inhomogeneity in the samples. The observation of a significant difference between ρ(T) and S(T) activation energies and a positive slope in thermal conductivity κ(T) implying that the conduction of charge carriers were dominated by small polaron in PM state of these manganites.  相似文献   

5.
Polycrystalline La0.70Sr0.30Mn1−yFeyO3 (0.05?y?0.07) samples are prepared by the co-precipitation method and have been studied. The substitution of Mn3+ by Fe3+ reduces the number of available hopping sites for the Mn eg(↑) electron and suppresses the double exchange (DE), resulting in the reduction of the metal–semiconductor transition temperature (TP) and the flux density saturation (Bs). Low-temperature resistivity (ρ) data (below TP) well fit with the relation ρ(T)=ρ0+ρ2T2, indicating the importance of grain/domain boundary effects and electron–electron scattering processes in the conduction of these materials. On the other hand, at high temperature (TP<T<θD/2) conductivity data satisfy the variable range hopping (VRH) model. For T>θD/2 the small polaron hopping model is more appropriate than the VRH model.  相似文献   

6.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

7.
The effect of Pr-doping on structural, electronic transport, magnetic properties in perovskite molybdates Sr1−xPrxMoO3 (0≤x≤0.15) has been investigated. The Pr-doping at Sr-site does not change the space group of the samples, but decreases the lattice parameter a. The magnitude of resistivity ρ increases initially (x≤0.08) and then decreases with further increasing Pr-doping level x and ρ(T) behaves as T2 and T dependence in the low-temperature range blow T* and high-temperature range of 150 K<T<350 K, related to the electron-electron (e-e) and electron-phonon (e-ph) scattering, respectively. The magnetic susceptibility χ value of the sample increases with increasing x and the χ(T) curve for all samples can be well described by the model of exchange-enhanced paramagnetism. The specific heat magnitude in the low-temperature region increases with increasing Pr-doping level. The specific heat value agrees with the classical Dulong-Petit phonon specific heat, Ccl=3kBrNA=124.7 J/mol K in the high-temperature region and the temperature dependence of the specific heat can be well described by the formula Cp(T)/T=γe+βpT2 in the low-temperature range. These behaviors can be explained by the competition between the increase in the density of state (DOS) at Fermi energy level and the disorder effect due to Pr-doping.  相似文献   

8.
The solid solution (Ce1−xLax)PtGa has been studied through X-ray diffraction, magnetization (σ(B)), magnetic susceptibility (χ(T)), electrical resistivity (ρ(T)), magnetoresistivity (MR) and heat capacity (CP(T)) measurements. The Néel temperature (TN=3.3 K) for CePtGa is lowered upon La substitution as observed from χ(T) and ρ(T) measurements. The Kondo temperature TK as calculated from MR measurements is comparable to TN and also decreases with La substitution. The volume dependence of TK is in accordance with the compressible Kondo lattice model and a Doniach diagram of the results is presented. CP(T) measurements are presented for CePtGa, Ce0.2La0.8PtGa and LaPtGa and the results are discussed in terms of the electronic and magnetic properties. Other features of interest are anomalies in ρ(T) and CP(T) due to crystalline electric field effects and metamagnetism as observed in σ(B) studies for samples with 0≤x≤ 0.3.  相似文献   

9.
The electrical properties and the mechanism of conduction of the simultaneously substituted La0.7−xYxBa0.3Mn1−xFexO3 perovskite (0≤x≤0.30) have been studied. The insertion of Y3+ and Fe3+ ions in the parent compound La0.7Ba0.3MnO3 leads to an increase of the resistivity. The undoped sample (x=0) shows a metallic behavior, which can be fitted by the relation ρ(T)=ρ0+ρ2T2+ρ4.5T4.5, indicating the importance of electron-magnon scattering effects in this material. All the other samples (x≥0.10) are semiconductors throughout the studied temperature range (80-290 K). Several models have been used to fit their temperature-dependent resistivity: thermal activation, adiabatic nearest-neighbor hopping of small polarons (Holstein theory) and variable range hopping (VRH) models. The fits show that the electronic transport in semiconducting La0.7−xYxBa0.3Mn1−xFexO3 is well described and dominated by the VRH mechanism, for which the hopping distance (a) grows with increasing Fe3+ doping, thus increasing the average hopping energy W.  相似文献   

10.
The critical parameters provide important information concerning the interaction mechanisms near the paramagnetic-to-ferromagnetic transition. In this paper, we present a thorough study for the critical behavior of La0.7A0.3(Mn1−xBx)O3 (A=Sr; B=Ti and Al; x=0.0 and 0.05) polycrystalline samples near ferromagnetic-paramagnetic phase transition temperature by analyzing isothermal magnetization data. We have analyzed our dc-magnetization data near the transition temperature with the help of the modified Arrot plot, Kouvel-Fisher method. We have determined the critical temperature TC and the critical parameters β, γ and δ. With the values of TC, β and γ, we plot M×(1−T/TC)β vs. H×(1−T/TC)γ. All the data collapse on one of the two curves. This suggests that the data below and above TC obey scaling, following a single equation of state. Critical parameters for x=0 and xTi=0.05 samples are between those predicted for a 3D-Heisenberg model and mean-field theory and for xAl=0.05 samples the values obtained for the critical parameters are close to those predicted by the mean-field theory.  相似文献   

11.
The effect of transition element (TE=Cr, Fe, Co, Ni, Cu, Zn) doping on the electronic transport and magnetic properties in the bilayer manganite La1.4Sr1.6Mn2O7 is studied for the same dopant concentration fixed at 2%. Doping does not cause change in structure but different behavior in magnetic and transport properties. Except for Cr, all the other dopings significantly shift the magnetic transition temperature (TC) to a lower temperature. Associated with such a decrease, the insulator-metal transition temperature (TIM) decreases and the peak resistivity (ρp) at TIM increases. Cr doping enhances TC and TIM as well as decreases ρp. Fe doping apparently has a stronger effect than Co and Ni doping. It is also indicated that Cu doping causes an anomalously large increase in ρp. These behaviors are compared with those observed in other bilayer manganites such as La1.2Sr1.8Mn2O7 as well as in La0.7Ca0.3Mn1−xTExO3.  相似文献   

12.
A series of the double-doping samples La(2+x)/3Sr(1−4x)/3Mn1−xCrxO3 (0?x?0.25) with the Mn3+/Mn4+ ratio fixed at 2:1 have been fabricated. The structural, magnetic, transport properties and Raman spectroscopy have been investigated, and no apparent crystal structure change is introduced by Cr doping up to x=0.25. But the Curie temperature TC and metal-insulator transition temperature TMI are strongly affected by Cr substitution. The room temperature Raman spectra start exhibiting some new features following the increasing concentration of Cr substitutions. Moreover, it is worth noting that the frequency of the A1g phonon mode can also be well correlated with the A-site mismatch effect (σ2), which is influenced mainly by the variety of the Sr content.  相似文献   

13.
Magnetic susceptibility, χ(T), is investigated in ceramic La1−xSrxMn1−yFeyO3 (LSMFO) samples with x=0.3 and y=0.15−0.25. A ferromagnetic (FM) transition observed in LSMFO is accompanied with an appreciable decrease of the transition temperature with increasing y, which is connected to breaking of the FM double-exchange interaction by doping with Fe. Strong magnetic irreversibility, observed in low (B=10 G) field, gives evidence for frustration of the magnetic state of LSMFO. The FM transition, which is expanded with increasing B, is more pronounced in the samples with y=0.15-0.20 and broadens considerably at y=0.25, where the irreversibility is increased. Well above the transition, χ(T) exhibits a Curie-Weiss asymptotic behavior, yielding very large values of the effective Bohr magneton number per magnetic ion, incompatible with those of Mn or Fe single ions. At y=0.15 and 0.20 a critical behavior of χ−1(T)∼(T/TC−1)γ in the region of the FM transition is characterized by influence of two different magnetic systems, a 3D percolative one with γ=γp≈1.8 and TC=TC(p), and a non-percolative 3D Heisenberg spin system, with γ=γH≈1.4 and TC=TC(H), where TC(p)<TC(H). At y=0.25 the percolative contribution to the critical behavior of χ(T) is not observed. The dependence of χ on T and y gives evidence for phase separation, with onset already near the room temperature, leading to generation of nanosize FM particles in the paramagnetic host matrix of LSMFO. The ferromagnetism of LSMFO is attributable to percolation over the system of such particles and generation of large FM clusters, whereas the frustration is governed presumably by a system of smaller weakly-correlated magnetic units, which do not enter the percolative FM clusters.  相似文献   

14.
The results of magnetic measurements performed on U(MnxAl1−x)2 compounds in the temperature range 4.2K < T < 800K are reported. In the low temperature range (T < 200K), UMn2 shows a Pauli-type paramagnetism. Above 420K a Curie-Weiss behaviour is evidenced. The magnetic properties of U(MnxAl1−x)2 compounds were analysed assuming a superposition of a temperature dependent term on a Pauli-type contribution, χO. The effective moments as well as the χO values were determined both in the low (T < 200K) and high (T > 420K) temperature range. The experimental data were discussed considering changes in the band structure and/or quenching of spin fluctuations.  相似文献   

15.
针对Co(S1-xSex)2系统在x=0.11附近发生的铁磁金属到顺磁金属相变,制备了一系列不同Se替代浓度的多晶样品.通过对其结构和电阻率-温度ρ(T)关系的系统观测,结果发现,样品铁磁相变温度TC随着Se替代浓度x值的增加,以(1-x)1/2关系单调下降,其二级铁磁相变转变为一级相变 关键词: 量子相变 自旋量子涨落 1-xSex)2')" href="#">Co(S1-xSex)2  相似文献   

16.
In a weak magnetic field LaMnO3+δ exhibits at δ=0.065 below the paramagnetic-to-ferromagnetic (FM) Curie temperature, TC, a mixed (spin-glass and FM) phase followed by a frustrated FM phase at δ between 0.100 and 0.154. The same behavior is observed in La1−xCaxMnO3 with x between 0 and 0.3. This can be understood by the similar variation of the Mn4+ concentration, c between ≈0.13 and 0.34, in both materials when x or δ is increased. On the other hand, considerable differences are found between these compounds in the values of the magnetic irreversibility, in the dependencies of TC(c) and the magnetic susceptibility, χ(c), as well as in the critical behavior of χ(T) near TC. These differences can be explained by distortions of the cubic perovskite structure, by the reduced lattice disorder and by the more homogeneous hole distribution in LaMnO3+δ than in La1−xCaxMnO3.  相似文献   

17.
The effect of the variation of oxygen content on structural, magnetic and transport properties in the electron-doped manganites La0.9Te0.1MnOy has been investigated. All samples show a rhombohedral structure with the space group The Curie temperature TC decreases and the paramagnetic-ferromagnetic (PM-FM) transition becomes broader with the reduction of oxygen content. The resistivity of the annealed samples increases slightly with a small reduction of oxygen content. Further reduction in the oxygen content, the resistivity maximum increases by six orders of magnitude compared with that of the as-prepared sample, and the ρ(T) curves of samples with y=2.86 and y=2.83 display the semiconducting behavior (dρ/dT<0) in both high-temperature PM phase and low-temperature FM phase, which is considered to be related to the appearance of superexchange ferromagnetism and the localization of carriers. The results are discussed in terms of the combined effects of the increase in the Mn2+/(Mn2++Mn3+) ratio, the partial destruction of double exchange interaction, and the localization of carriers due to the introduction of oxygen vacancies in the Mn-O-Mn network.  相似文献   

18.
The study of the structural and magnetic phase diagram of the manganites La1−xAgxMnO3 shows similarity with the La1−xSrxMnO3 series, involving a metallic ferromagnetic domain at relatively high temperature (≈300 K). The Ag-system differs from the Sr-one by a much smaller homogeneity range (x≤1/6) and the absence of charge ordering. But the most important feature of the Ag-manganites deals with the exceptionally high magnetoresistance (−25%) at room temperature under 1.2 T, that appears for the composition x=1/6. The latter is interpreted as the coincidence of the optimal double exchange condition (Mn3+:Mn4+=2) with Tmax=300 K (maximum of the ρ(T) curve in zero field).  相似文献   

19.
Lanthanum based mixed valence manganite system La1−xCax−0.08Sr0.04Ba0.04MnO3 (LCSBMO; x=0.15, 0.24 and 0.33) synthesized through the sol-gel route is systematically investigated in this paper. The electronic transport and magnetic susceptibility properties are analyzed and compared, apart from the study of unit cell structure, microstructure and composition. Second order phase transition is observed in all the samples and significant difference is observed between the insulator to metal transition temperature (TMI) and paramagnetic (PM) to ferromagnetic (FM) transition temperature (TC). In contrast to the insulating FM behaviour usually observed in La1−xCaxMnO3 (LCMO) for x=0.15, a clear insulator to metal transition is observed for LCSBMO for the same percentage of lanthanum. The temperature dependent resistivity of polycrystalline pellets, when obeying the well studied law ρ=ρo+ρ2T2 for T<TMI, is observed to differ significantly in the values of ρo and ρ2, with the electrical conductivity increasing with x. The variable range hopping model has been found to fit resistivity data better than the small polaron model for T>TMI. AC magnetic susceptibility study of the polycrystalline powders of the manganite system shows the highest PM to FM transition of 285 K for x=0.33.  相似文献   

20.
The effect of Fe substitution for Co on direct current (DC) electrical and thermal conductivity and thermopower of Ca3(Co1−xFex)4O9 (x = 0, 0.05, 0.08), prepared by a sol–gel process, was investigated in the temperature range from 380 down to 5K. The results indicate that the substitution of Fe for Co results in an increase in thermopower and DC electrical resistivity and substantial (14.9–20.4% at 300K) decrease in lattice thermal conductivity. Experiments also indicated that the temperature dependence of electrical resistivity ρ for heavily substituted compounds Ca3(Co1−xFex)4O9 (x = 0.08) obeyed the relation lnρT−1/3 at low temperatures, T < ~55K, in agreement with Mott’s two-dimensional (2D) variable range hopping model. The enhancement of thermopower and electrical resistivity was mainly ascribed to a decrease in hole carrier concentration caused by Fe substitution, while the decrease of thermal conductivity can be explained as phonon scattering caused by the impurity. The thermoelectric performance of Ca3Co4O9 was not improved in the temperature range investigated by Fe substitution largely due to great increase in electrical resistivity after Fe substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号