首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arrays of ferroelectric PZT nanowires with lateral size down to 200 nm were fabricated by nanoembossing technology. Structural characterization of the embossed PZT film was studied by Raman spectroscopy. Multidomain configurations of a single nanowire have been explored by vertical mode piezoresponse force microscopy (VPFM). The local electric polarization of the individual ferroelectric nanowire has also been investigated. Excellent ferroelectric and piezoelectric characteristics observed in the embossed PZT nanowires suggest nanoembossing technique proposed in this work is promising to become a useful method for ferroelectric nanowires fabrication.  相似文献   

2.
《Current Applied Physics》2018,18(8):886-892
Effects of annealing temperature (600–750 °C) on crystalline structure, the morphology and piezoresponse hysteresis loops of BaTiO3 nanofibers prepared by electrospinning are characterized by X-ray diffraction, scanning electronic microscopy, transmission electron microscope and piezoresponse force microscope. When the annealing temperature is 700 °C, the nanofibers become smoother and have a diameter of 100–300 nm. Meanwhile the typical butterfly-shaped amplitude loop and 180°phase change represents the best ferroelectric and piezoelectric properties at 700 °C. So the 700 °C was found to be optimum for good piezoelectric characteristics at annealing temperature of 600 °C–750 °C. In order to give more clear evolution of domain states at different external fields, the three dimensional topographic and phase images of the nanofiber at different temperatures are observed by piezoresponse force microscope. The 90° domain switching is observed during heating from room temperature to 125 °C and the domain switching tends to be stable when the temperature exceeds a critical value. The thermal stress due to the high temperatures is responsible for switching mechanism from the perspective of equilibrium state free energy. This work suggests that the temperature variation should be considered while designing the ferroelectric devices based on one dimensional material.  相似文献   

3.
Interfacial resistive switching of a ferroelectric semiconductor heterojunction is highly advantageous for the newly developed ferroelectric memristors. Moreover, the interfacial state in the ferroelectric semiconductor heterojunction can be gradually modified by polarization reversal, which may give rise to continuously tunable resistive switching behavior. In this work, the interfacial state of a ferroelectric BiFeO3/Nb-doped SrTiO3 junction was modulated by ferroelectric polarization reversal. The dynamics of surface screening charges on the BiFeO3 layer was also investigated by surface potential measurements, and the decay of the surface potential could be speeded up by the magnetic field. Moreover, ferroelectric polarization reversal of the BiFeO3 layer was tuned by the magnetic field. This finding could provide a method to enhance the ferroelectric and electrical properties of ferroelectric BiFeO3 films by tuning the magnetic field.  相似文献   

4.
The effects of Bi and Fe-excess on the structure, ferroelectric, leakage current and magnetic properties of BiFeO3 (BFO) thin films are reported. BFO with 5% excess exhibits no change in the structure with an improvement in leakage current properties in comparison to stoichiometric BFO. Raman spectroscopy of 10% Bi excess suggests a structural change from monoclinic to rhombohedral accompanied with an improvement of resistivity and ferroelectric polarization switching. A higher Fe-excess leads to the formation of pyrochlore Bi2Fe4O9 and gamma-Fe2O3 that cause an increase in conductivity at the macroscopic scale. The results are discussed in terms of Fe and Bi-excess effects on the defect structure of BFO.  相似文献   

5.
0.85Bi0.5Na0.5TiO3-0.15Bi0.5K0.5TiO3 (BNKT15) lead-free thin films were prepared on Pt(111)/TiO2/SiO2/Si(100) substrates by the chemical solution deposition method. BNKT15 are MPB composition in the Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 (BNT-BKT) system. The maximum piezoelectric coefficient (d33,f) value of BNKT15 thin film is approximately 75 pm/V, which is comparable to that of polycrystalline PZT thin films. These results suggest that BNKT15 thin film can be used as an alternative for PZT films in piezoelectric micro-electromechanical systems.  相似文献   

6.
《Current Applied Physics》2015,15(5):584-587
We investigated ferroelectric characteristics of BiFeO3 (BFO) thin films on SrRuO3 (SRO)/yttria-stabilized zirconia (YSZ)/glass substrates grown by pulsed laser deposition. YSZ buffer layers were employed to grow highly crystallized BFO thin films as well as SRO bottom electrodes on glass substrates. The BFO thin films exhibited good ferroelectric properties with a remanent polarization of 2Pr = 59.6 μC/cm2 and fast switching behavior within about 125 ns. Piezoelectric force microscopy (PFM) study revealed that the BFO thin films have much smaller mosaic ferroelectric domain patterns than epitaxial BFO thin films on Nb:SrTiO3 substrates. Presumably these small domain widths which originated from smaller domain energy give rise to the faster electrical switching behavior in comparison with the epitaxial BFO thin films on Nb:SrTiO3 substrates.  相似文献   

7.
Bismuth ferrite (BFO) thin films were fabricated by RF-magnetron sputtering deposition method on Pt/Ti/SiO2/Si(1 0 0) substrate. The effect of the thickness of BFO films varying from 85 to 280 nm on electrical properties was investigated. Saturated coercive fields were found to increase with the BFO film thickness. The dielectric constant of BFO thin films measured at 1 kHz decreased with decreasing thickness from 98 to 86, while tangent losses increased from 0.013 to 0.021. The presence of bismuth oxide at the interface between BFO films and Pt bottom electrodes was responsible for the high leakage currents in thin BFO thin films as was demonstrated by X-ray diffraction, grazing-incident X-ray diffraction, and secondary ion mass spectroscopy analysis.  相似文献   

8.
Cement-based piezoelectric composites have attracted great attention recently due to their promising applications as sensors in smart structures. Lead zirconate titanate (PZT) and Portland cement (PC) composite were fabricated using 60% of PZT by volume. Scanning Electron Microscope and piezoresponse force microscope were used to investigate the morphology and domain configurations at the interfacial zone of PZT-Portland cement composites. Angular PZT ceramic grains were found to bind well with the cement matrix. The submicro-scale domains were clearly observed by piezoresponse force microscope at the interfacial regions between the piezoelectric PZT phase and Portland cement phase, and are clearer than the images obtained for pure PZT. This is thought to be due to the applied internal stress of cement to the PZT ceramic particle which resulted to clearer images.  相似文献   

9.
Yongjian Zhu  Yanan Zhi  Liren Liu 《Optik》2010,121(1):89-93
We design a fringe-variable Jamin interferometer to detect the reversed domain of a ferroelectric crystal in real time. In contrast to the Mach-Zehnder interferometer, this setup is compact and tunable in fringe frequency. In experiments, we use it to detect the partly reversed domains of Stoichiometric LiTaO3 (SLT). Selecting the proper fringe cycle, we can estimate the average phase shift between the original and reversed domains through eyeballing. Furthermore, in the interferogram processing, we use the FFT methods to reconstruct the phase according to the original fringe and deformed fringe, and obtain the phase variance at the domain wall. The results show that the average phase variance at the domain wall is in good agreement with the theoretical value.  相似文献   

10.
Ferroelectric and fatigue behavior of bilayered thin films consisting of Mn4+-modified BiFeO3 and Zn2+-modified BiFeO3, which were deposited on SrRuO3-buffered Pt coated silicon substrates, were systematically investigated. The (1 1 1) orientation is induced for the BiFe0.95Mn0.05O3/BiFe0.95Zn0.05O3 bilayer, due to the introduction of the bottom BiFe0.95Zn0.05O3 layer. With increasing the thickness ratio of the BiFe0.95Mn0.05O3 layer, their leakage current decreases, and the fatigue endurance is greatly improved owing to the introduction of the BiFe0.95Mn0.05O3 layer with a lower fatigue rate. The BiFe0.95Mn0.05O3/BiFe0.95Zn0.05O3 bilayer with the thickness ratio of 3:1 exhibits a larger remanent polarization of 2Pr ∼ 161.0 μC/cm2 than those of bilayers with different thickness ratios, while their coercive field slightly increases with increasing the thickness ratio of the BiFe0.95Mn0.05O3 layer.  相似文献   

11.
In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO3 and Bi0.85Dy0.15FeO3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO3 samples are obviously broadened after magnetic annealing, whereas those of Bi0.85Dy0.15FeO3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO3 samples, the remnant polarizations (Pr) are suppressed; in contrast, for Bi0.85Dy0.15FeO3 samples, Pr is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed.  相似文献   

12.
Multiferroic thin films with the general formula TiO2/BiFe1−xMnxO3 (x=0.00, 0.05, 0.10 and 0.15) (TiO2/BFMO) were synthesized on Au/Ti/SiO2/Si substrates using a chemical solution deposition (CSD) method assisted with magnetron sputtering. X-ray diffraction analysis shows the thin films contained perovskite structures with random orientations. Compared with BFMO films, the leakage current density of the TiO2/BFMO thin films was found to be lower by nearly two orders of magnitude, and the remnant polarizations were increased by nearly ten times. The enhanced ferroelectric properties may be attributed to the lower leakage current caused by the introduction of the TiO2 layer. The J-E characteristics indicated that the main conduction mechanism for the TiO2/BFMO thin film was trap-free Ohmic conduction over a wide range of electric fields (0-500 kV/cm). In addition, ferromagnetism was observed in the Mn doped BFO thin films at room temperature. The origin of ferromagnetism is related to the competition between distortion of structure and decrease of grain size and decreasing net magnetic moment in films due to Mn doping.  相似文献   

13.
BiFeO3/LaNiO3 (BFO/LNO) heterostructure was fabricated on quartz substrate via RF sputtering method. The microstructure and surface morphology of the BFO/LNO heterostructure was demonstrated. BFO layer shows good ferroelectric and weak ferromagnetic characters at room temperature. The dielectric constants of the heterostructure under an applied magnetic field 1.2T and zero field are both decreased with increasing frequency at room temperature and the dielectric constant under the applied magnetic field is larger, which is attributed to the coupling between the electric and magnetic dipoles, and further demonstrated in the framework of the Ginzburg-Landau theory for second phase transition. Additionally, the photoconductivity of the heterostructure under blue-laser illumination was observed, and the photoconductivity increase with the enhanced power of the blue-laser.  相似文献   

14.
Bi1–xBaxFeO3 (0.0≤x≤0.25) ceramics are prepared by chemical synthesis route. At room temperature, antiferromagnetic BiFeO3 is converted to ferromagnetic on doping Ba. A large change in the magnetization is observed around 370 °C which is close to the Neel temperature (TN) of parent compound. Another magnetic transition is also observed near 600 °C. Spin canting or impurity phase could be a probable reason for the origin of ferromagnetism in both cases. Ferroelectric and magnetic transitions of the compounds shift towards higher temperature with Ba-doping concentration. Anomaly in the dielectric constant is also observed near the TN of BiFeO3. The composition x=0.15 shows the maximum magnetic moment at room temperature while better fatigue resistance and maximum magnetoelectric coupling are observed for x=0.20 composition.  相似文献   

15.
Ferroelectric BiFeO3 thin films and artificial superlattices of (BiFeO3)m(SrTiO3)m (m∼1-10 unit cells) were fabricated on (0 0 1)-oriented SrTiO3 substrates by pulsed laser ablation. The variation of leakage current and macroscopic polarization with periodicity was studied. Piezo force microscopy studies revealed the presence of large ferroelectric domains in the case of BiFeO3 thin films while a size reduction in ferroelectric domains was observed in the case of superlattice structures. The results show that the modification of ferroelectric domains through superlattice could provide an additional control on engineering the domain wall mediated functional properties.  相似文献   

16.
Multifunctional thin film nanostructures containing soft magnetic materials such as nickel ferrite are interesting for potential applications in microwave signal processing because of the possibility to shrink the size of device architecture and limit device power consumption. An essential prerequisite to future applications of such a system is a firm understanding of its magnetic properties. We show that nanostructures composed of ferrimagnetic NiFe2O4 pillars in a multiferroic BiFeO3 matrix can be tuned magnetically by altering the aspect ratio of the pillars by depositing films of varying thickness. Magnetic anisotropy is studied using ferromagnetic resonance, which shows that the uniaxial magnetic anisotropy in the growth direction changes sign upon increasing the film thickness. The magnitude of this anisotropy contribution can be explained via a combination of shape and magnetostatic effects, using the object-oriented micromagnetic framework (OOMMF). The key factors determining the magnetic properties of the films are shown to be the aspect ratio of individual pillars and magnetostatic interactions between neighboring pillars.  相似文献   

17.
Lead-free piezoelectric ceramics of (1−x)K0.5Na0.5NbO3-xLiTaO3 (KNN-LT) system have been investigated in this work. X-ray diffraction, Raman spectra measurements, DSC (Differential Scanning Calorimetric), and dielectric constant versus temperature provide direct evidence that the phase transition temperature between tetragonal and orthorhombic shift to lower temperature with the increasing of LT content. The KNN-0.05LT ceramics exhibit the highest high-field d33 up to 220 pm/V. At the same time, we also investigated the relationship between phase structure and electric properties, showing that the orthorhombic phase presents better piezoelectric temperature stabilities than the tetragonal phase. The result may provide a new way for KNN-based lead-free ceramics.  相似文献   

18.
19.
We have studied the effect of thermal treatment on the magnetic domain structure and magnetic reversal process of amorphous and nanocrystalline Fe40Co38Mo4B18 microwires. The domain structure and the magnetization reversal of amorphous FeCoMoB microwires reflect the complex stress distribution introduced by the glass coating. Hence, the thickness of radial domain structure decreases with temperature and the temperature dependence of the switching field presents a discontinuous behavior. After nanocrystallization, the domain structure of FeCoMoB microwire is almost constant within the temperature range 10-400 K and the switching field decreases almost linearly with temperature mostly because of the decrease of saturation magnetization.  相似文献   

20.
The [(Pb0.90La0.10)Ti0.975O3/PbTiO3]n (PLT/PT)n (n = 1-6) multilayer thin films were deposited on the PbOx(1 0 0)/Pt/Ti/SiO2/Si substrates by RF magnetron sputtering method. The layer thickness of PbTiO3 in one periodicity kept unchanged, and the layer thickness of (Pb0.90La0.10)Ti0.975O3 is varied. The electrical properties of the (PLT/PT)n multilayer thin films were investigated as a function of the periodicity (n) and the orientation. The studied results show that the PbOx buffer layer results in the (PLT/PT)n films’ (1 0 0) orientation, and the (1 0 0)-oriented (PLT/PT)n multilayer thin films with n = 2 exhibit better pyroelectric properties and ferroelectric behavior than those of (PLT/PT)n films with other periodicities and orientations. The underlying physical mechanism for the enhanced electrical properties of (PLT/PT)n multilayer thin films was carefully discussed in terms of the periodicities and orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号