首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical and magnetic properties of one-dimensional calcium iridium oxide Ca5Ir3O12 are investigated. A weak ferromagnetic transition has been found at 7.5 K through magnetic susceptibility measurements. At the same temperature, a λ-type specific heat anomaly has been observed. The effective magnetic moments in the paramagnetic temperature range and the magnetic entropy due to the magnetic transition indicates that the tetravalent and pentavalent Ir ions exist in the ratio of 1:2. Another λ-type anomaly has been observed at 105 K in the temperature dependence of the specific heat. The electrical conductivity shows one-dimensional Mott variable-range hopping conduction behavior.  相似文献   

2.
The electrical transport properties were investigated of a glass system of basic composition 50?mol. % Pb3O4–50?mol. % P2O5 containing CoO, Cr2O3 or V2O5 dopanys. The ac conductivity and the thermoelectric power were measured as a function of temperature. Properties such as dielectric constant, loss factor tangent and electrical conductivity are reported in the frequency range 200?Hz–100?kHz and temperature range 300–450?K. The variation in electrical conductivity with temperature was found to depend on the types of transition metal ions involved. The temperature dependence of the frequency exponent, s, was analyzed using different theoretical models. The variation of the thermoelectric power with temperature indicated the presence of more than one conduction mechanism for the investigated samples. This result was confirmed with the results of the dielectric properties at different frequencies. The introduction of cobalt ions in glass formers improves the electrical properties of non-crystalline ionic conductors.  相似文献   

3.
Crystallization processes of partially devitrifled glass obtained by rapid quenching of 0·175 MnO + 0·175. Fe2O3 + 0·65 B2O3 melt were studied by DTA and X-ray analyses and the temperature regions of nucleation, crystallization and decompozition of the spinel phase were established. The magnetization curves measured between 4·2 and 250 K in magnetic fields up to 42 kOe divided the samples into two groups: the original as cast glass and those annealed below the crystallization temperature, as well as above the decomposition temperature showed essentially paramagnetic behaviour, whereas those annealed closely above the crystallization temperature displayed a spontaneous magnetic moment. The former ones could not be classified as superparamagnetic but the temperature dependence of their susceptibility could be explained by interactions of the antiferromagnetic type. The comparison of lattice parameter and Curie temperature of the latter one with crystalline Mn x Fe3-x O4, system indicated pronounced iron enrichment of the spinel phase formed during heat treatment.Based on a paper presented at the Conference of Socialist Countries on Magnetic Oxides and Compounds; Reinhardsbrunn bei Friedrichroda, GDR, October 22nd–27th, 1972.The authors thank Mrs. A.Hadincová for the help with the evaluation of the results.  相似文献   

4.
New germanosilicate glasses giving the crystallization of yttrium iron garnet Y3Fe5O12 (YIG) and Bi-doped YIG, 23Na2O-xBi2O3-(12−x)Y2O3-25Fe2O3-20SiO2-20GeO2 (mol%), are developed, and the laser-induced crystallization technique is applied to the glasses to pattern YIG and Bi-doped YIG crystals on the glass surface. It is clarified from the Mössbauer effect measurements that iron ions in the glasses are present mainly as Fe3+. It is suggested from the X-ray diffraction analyses and magnetization measurements that Si4+ ions are incorporated into YIG crystals formed in the crystallization of glasses. The irradiations (laser power: 32-60 mW and laser scanning speed: 7 μm/s) of continuous wave Yb:YVO4 fiber laser (wavelength: 1080 nm) are found to induce YIG and Bi-doped YIG crystals, indicating that Fe3+ ions in the glasses act as suitable transition metal ions for the laser-induced crystallization. It is suggested that YIG and Bi-doped YIG crystals in the laser irradiated part might orient. The present study will be a first step for the patterning of magnetic crystals containing iron ions in glasses.  相似文献   

5.
Lead vanadate glasses of the system 5Li2O−(45−x) PbO−(50+x) V2O5, with x=0, 5, 10, and 15 mol% have been prepared and studied by differential scanning calorimetry (DSC). The crystallization kinetics of the glasses were investigated under non-isothermal conditions applying the formal theory of transformations for heterogeneous nucleation to the experimental data obtained by DSC using continuous-heating techniques. In addition, from dependence of the glass-transition temperature (Tg) on the heating rate, the activation energy for the glass transition was derived. Similarly the activation energy of the crystallization process was determined and the crystallization mechanism was characterized. The results reveal the increase of the activation energy for glass transition which was attributed to the increase in the rigidity, the cross-link density and the packing density of these glasses. The phases into which the glass crystallizes have been identified by X-ray diffraction. Diffractograms of the transformed material indicate the presence of microcrystallites of Li0.30V2O5, Li0.67O5V2, LiV6O15, Li4O4Pb, and O7Pb2V2 in a remaining amorphous matrix.  相似文献   

6.
The effects of magnetic property dependence of the Mn1.56Co0.96Ni0.48O4 (MCN) films on crystallization are investigated in the growth temperature of 450-750 °C. With the growth temperature increase, both the crystalline quality and the grain size improve. The MCN films exhibit paramagnetic to ferromagnetic transition and the paramagnetic parts fit to the modified Curie-Weiss law. The ferromagnetic couplings of the magnetic ions in the MCN films enhance at elevated growth temperature. The saturation magnetization at 5 K increases with increasing growth temperature, but coercive field decreases monotonously. The magnetic properties of the MCN films strongly depend on their microstructures.  相似文献   

7.
The glasses in the SrO-TiO2-P2O5 system were prepared by the conventional quenching route. The amorphous state of samples was verified by X-ray diffraction (XRD). Density, molar volume, micro-hardness, glass transition temperature (Tg), and crystallization temperature (Tc) parameters are determined for each glass. The results show that they depend strongly on the chemical compositions. The structure approach of the glasses is determined by using Infrared spectroscopy (IR). This investigation highlights that the glassy-matrix contains various phosphate structural units. The crystallization of the glasses by heat-treatments is performed and the crystallized phases Sr3P4O13, TiP2O7, Sr(PO3)2 are identified by XRD. The overall results are correlated to the glass structure and the nature of chemical bonds constituting the glass network.  相似文献   

8.
Oxyfluoride silicate glass SiO2-Al2O3-Na2CO3-NaF-LaF3-ErF3 was synthesized. The glass transition and crystallization temperatures were determined by differential thermal analysis. Glass ceramics containing LaF3:Er3+ crystallites of size ∼20 nm were formed in the glass matrix after the heat treatment of the precursor glass in the vicinity of the crystallization temperature. Up-conversion luminescence, excitation spectra as well as time-resolved up-conversion luminescence of the glass and glass ceramics were studied at different temperatures. The up-conversion transients showed that at room temperature the dominant mechanism of the up-conversion luminescence in the glass ceramics is excited state absorption while at lower temperatures energy-transfer mechanism prevails. The origins of these differences are discussed in terms of the transitions between Stark manifolds of 4I15/2, 4I11/2 and 4F7/2 states in Er3+ ions.  相似文献   

9.
In a system where magnetic ions occupy the vertices of edge or corner sharing triangular units, the natural antiferromagnetic coupling between ions is geometrically frustrated. A wide variety of interesting magnetic behaviour has been observed in pyrochlores, where magnetic ions form a network of corner sharing tetrahedra. The low temperature spin dynamics of a number of pyrochlores A2B2O7 have been investigated using the technique of μ SR. For example, Y2Mo2O7 shows a transition to a disordered magnetic state similar to a spin glass at TF=22 K. However, unlike conventional metallic spin glasses, a non‐zero muon spin depolarization rate is observed to persist well below 0.1\ TF. These results suggest that there is a finite density of states for magnetic excitations in this system near zero energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We have synthesized thin films of disordered zinc ferrite (ZnFe2O4) and ilmenite-hematite (FeTiO3-Fe2O3) solid solution, the former and the latter of which are interesting from the viewpoints of magnetooptics and spintronics, respectively, by utilizing sputtering and pulsed laser deposition methods, and have explored their magnetic, magnetooptical, and electrical properties. Although ZnFe2O4 possesses a normal spinel structure as its stable phase, some of the Fe3+ ions occupy the tetrahedral as well as the octahedral sites in ZnFe2O4 of which the sputtered thin film is composed. Consequently, the as-deposited thin film manifests large magnetization even at room temperature although the magnetic phase transition temperature of the stable phase of ZnFe2O4 is as low as 10 K. Also, the thin film exhibits a cluster spin glass transition at a temperature as high as 325 K. Furthermore, the ZnFe2O4 thin films exhibit large Faraday effects at a wavelength of 400 nm or so. The ilmenite-hematite solid solution is one of the ferrimagnetic semiconductors. Most of the compositions possess Curie temperatures higher than room temperature, and the type of carrier can be tuned only by changing the composition. We have succeeded in synthesizing solid-solution thin films of various compositions grown epitaxially on sapphire substrates with a (0 0 0 1) plane, and have shown that the thin films are ferrimagnetic semiconductors.  相似文献   

11.
The laser-induced crystallization technique has been applied to 10La2O3-35SrO-25MnO2-30B2O3 glass (mol%) in order to examine the possibility of the formation and morphology control of perovskite-type La1?xSrxMnO3 crystals on the glass surface. It is found from X-ray diffraction analyses that La0.7Sr0.3MnO3 crystals are formed in the sample obtained by continuous wave Y b:Y V O4 fiber laser (wavelength: 1080 nm) irradiations (power: 350 mW, scanning speed: 10 μm/s). La0.7Sr0.3MnO3 manganites in the laser-irradiated samples are proposed to be ferromagnetic crystals having a Curie temperature of ~315 K from magnetization measurements and the Arrott plot. The surface morphology of laser-irradiated parts is not smooth, and La0.7Sr0.3MnO3 crystals are present randomly without any orientations. It is clarified that Mn4+ ions in the glass act as suitable transition metal ions for the laser-induced crystallization.  相似文献   

12.
《Solid State Ionics》2006,177(26-32):2589-2592
The study of electrical conductivity of 27.5 Li2O : (72.5  x) B2O3 : x Al2O3 glass samples has been carried out. It has been observed that the conductivity exhibits Arrhenius behavior for all samples up to glass transition temperature Tg. Beyond Tg, an anomalous enhancement followed by decrease in conductivity has been observed. The results have been explained by dividing the temperature range into two regions. In region-I, it has been observed that the conductivity variation exhibits a maximum at 2.5 mol% Al2O3, which has been explained on the basis of Mixed Glass Former Effect (MGFE). An anomalous enhancement in the conductivity observed in region-II has been attributed to the nucleation in the glass. The subsequent decrease in the conductivity has been attributed to the crystallization of the glass samples.  相似文献   

13.
Differential scanning calorimetry (DSC) and XRD were used to investigate the role of sulfur in the network of V2O5–Fe2O3–BaO glasses. The crystallization kinetics of the glasses were investigated under non-isothermal conditions applying the formal theory of transformations for heterogeneous nucleation to the experimental data obtained by DSC. The activation energy for the glass transition (E g) was derived from dependence of the glass-transition temperature (T g) on the heating rate. Similarly the activation energy of the crystallization (E c) and the frequency factor (K 0) were determined. The results reveal the increase of the activation energy for glass transition was attributed to the increase in the rigidity and the cross-link density of these composites. The evaluated thermal stability decreases with increasing sulfur content. The phases of BaFe2O4, V2O5 and FeVO4 micro-crystallites in the remaining amorphous matrix have been identified by X-ray diffraction.  相似文献   

14.
Zinc phosphate glasses doped with Gd2O3:Eu nanoparticles and Eu2O3 were prepared by conventional melt-quench method and characterized for their luminescence properties. Binary ZnO-P2O5 glass is characterized by an intrinsic defect centre emission around 324 nm. Strong energy transfer from these defect centres to Eu3+ ions has been observed when Eu2O3 is incorporated in ZnO-P2O5 glasses. Lack of energy transfer from these defect centres to Eu3+ in Gd2O3:Eu nanoparticles doped ZnO-P2O5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between the luminescent centre and Eu3+ ions. Both doped and undoped glasses have the same glass transition temperature, suggesting that the phosphate network is not significantly affected by the Gd2O3:Eu nanoparticles or Eu2O3 incorporation.  相似文献   

15.
A glass matrix with nominal composition 50Li2O·45B2O3·5Al2O3 (mol%) was synthesized, and its physical properties were investigated by differential thermal analysis (DTA), X-ray diffraction (XRD), and atomic force microscopy (AFM). The glass transition temperature T g, the crystallization-onset temperature T x,, the crystallization peak temperatures T c1 and T c2, and the fusion peak temperatures T m1 and T m2 were determined from at least two glass matrix phases to be approximately 382, 457, 486, 574, 761, and 787?°C, respectively, at 5?°C/min heating rate. Heat treatments at 450?°C for an increasing sequence of time intervals allowed control over the amount of crystallization. Additional information on the crystallization kinetics for the LBA glass matrix was gathered from AFM images, DTA thermograms, and XRD diffractograms. The latter technique showed that LiBO2 (ICDD-16568) and Li3AlB2O6 (ICDD-51754) phases are formed in the glass?Cceramic system. Debye?CScherrer analysis of the XRD peaks revealed a competition between the evolutions of crystal phases during heat treatment. Activation energies for crystallization, obtained from theoretical models applied to the DTA data showed that the crystallization is heterogeneous. The AFM images demonstrated that this heterogeneous crystallization starts at the surface of the LBA glass matrix and identified crystal sizes in agreement with the results of the Debye?CScherrer analysis. Our study shows that thermal and structural characterization techniques can be combined with theoretical results drawn from well-tested models to offer a unified view of crystallization in a glass?Cceramics system.  相似文献   

16.
A crystallization study has been carried out for rapidly solidified Bi2Pb0.5Sr2Ca4Cu5Ox glass. Glass transition temperature T g, crystallized superconducting phases and microstructural changes were measured and analysed by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The crystallization mechanism of the three superconducting phases — (2201) 20 K phase, (2212) 80 K phase, and (2223) 110 K phase — has been discussed, and a time-temperature-transformation diagram for the glass has been constructed.  相似文献   

17.
PbO–Sb2O3–As2O3 glasses mixed with different concentrations of MoO3 (ranging from 0 to 1.0 mol%) were crystallized. The samples were characterized by X-ray diffraction, scanning electron microscopy and differential thermal analysis techniques. The X-ray diffraction and the scanning electron microscopic studies have revealed the presence of Pb5Sb2O8, PbSb2O6, SbAsO4, Sb2MoO6, Sb4Mo10O31, As4Mo3O15, Pb5Sb4O11 crystalline phases in these samples. The differential thermal analysis indicated that the surface crystallization prevails over the bulk crystallization as the concentration of the crystallizing agent is increased. The infrared (IR) spectral studies exhibit bands due to MoO4 structural units in addition to the conventional bands due to various antimonate and arsenate structural groups. The studies on PbO–Sb2O3–As2O3: MoO3 glass-ceramics with respect to various physical properties viz., dielectric properties over a range of frequency and temperature, optical absorption, electron spin resonance (ESR) and magnetic susceptibility at room temperature have also been reported. The optical absorption, ESR and magnetic susceptibility studies indicated that the molybdenum ions exist in Mo5+ state in addition to Mo6+ state in these samples. The redox ratio found to increase as the concentration of the MoO3 is increased. The variations observed in all these properties with the concentration of the crystallizing agent have been analyzed in the light of different oxidation states and environment of molybdenum ions in the glass ceramic network.  相似文献   

18.
The crystallization and glass transition kinetics using differential scanning calorimetry (DSC) in 50AgI–33.33Ag2O–16.67[(V2O5)1−x –(MoO3) x ] superionic glassy system is discussed. Thermal stability of glass, studied using various criteria, does not vary significantly with glass former variation. However, the activation energies for structural relaxation (E s) at glass transition temperature and crystallization (E c) obtained using Moynihan and Kissinger, Matusita-Sakka formulations found to exhibit interesting trends with MoO3 substitution in the glass matrix. It is noticed that the electrical conductivity (σ)–temperature (T) cycles obtained at a typical heating rate of 1 °C/min do exhibit significant thermal events. The conductivity after first heating cycle at room temperature is found to be increasing with MoO3 content and maximum for x = 0.3 (~10−3 Ω−1 cm−1 at 30 °C) which is comparable to that of the host 50AgI–33.33Ag2O–16.67V2O5 glassy system. The parameters obtained from σT plots and DSC scans do complement each other in a particular range of composition.  相似文献   

19.
《辐射效应与固体损伤》2013,168(1-6):375-381
Glass ceramics of the composition (Bi0.8Pb0.2)4Sr3Ca3Cu4O8 prepared by the melt quenching technique and the crystalline phases produced by the rapid thermal annealing have been studied by electrical resistivity and electron paramagnetic resonance (EPR) measurements in the temperature range from liquid helium up to room temperature. The concentration of the EPR active Cu2? paramagnetic centers decreases as conductivity increases for the glass ceramics and disappears after crystallization and the growth of superconducting phases, similar to bulk high-Tc superconductors. The KPR spectra of both glass and crystallized ceramics after short-time annealing indicate the coexistence of Cu2? paramagnetic ions and the exchange coupled clusters.  相似文献   

20.
The structural and electrical conductivity (σ) of annealed SrTiO3–PbO2–V2O5 glasses were studied. The annealing of initially glass samples leads to formation of nanocrystalline grains embedded in the glassy matrix. XRD patterns of the glass–ceramic samples show that nanocrystals were embedded in the glassy matrix with an average grain size of 32 nm. The glass–ceramic nanocrystals obtained by annealing at temperatures close to the crystallization temperature Tc exhibit enhancement of electrical conductivity up to four orders of magnitude than initially glasses. The enhancement of the electrical conductivity due to annealing was attributed to two interdependent factors: (i) an increase of concentration of V4+–V5+ pairs; and (ii) formation of defective, well-conducting regions along the glass–crystallites interfaces. From the conductivity temperature relation, it was found that small polaron hopping model was applicable at temperature above θD/2 (θD, the Debye temperature). The electrical conduction at T >θD/2 was due to non-adiabatic small polaron hopping (SPH) of electrons between vanadium ions. The parameters obtained from the fits of the experimental data to this model appear reasonable and are consistent with glass composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号