首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Summary The propagation of an anti-plane moving crack in a functionally graded piezoelectric strip (FGPS) is studied in this paper. The governing equations for the proposed analysis are solved using Fourier cosine transform. The mixed boundary value problems of the anti-plane moving crack, which is assumed to be either impermeable or permeable, are formulated as dual integral equations. By appropriate transformations, the dual integral equations are reduced to Fredholm integral equations of the second kind. For the impermeable crack, the stress intensity factor (SIF) of the crack in the FGPS depends on both the mechanical and electric loading, whereas, the SIF for the permeable crack depends only on the mechanical loading. The results obtained show that the gradient parameter of the FGPS and the velocity of the crack have significant influence on the dynamic SIF.Support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 7081/00E) is acknowledged. Support from the National Natural Science Foundation of China (Project No. 10072041) is also acknowledged.  相似文献   

2.
The problem of a penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer is investigated. The surfaces of the composite structure are subjected to both mechanical and electrical loads. The crack surfaces are assumed to be electrically impermeable. Integral transform method is employed to reduce the problem to a Fredholm integral equation of the second kind. The stress intensity factor, electric displacement intensity factor and energy release rate are derived, some typical numerical results are plotted graphically. The effects of electrical loads, material nonhomogeneity and crack configuration on the fracture behaviors of the cracked composite structure are analyzed in detail.  相似文献   

3.
功能梯度压电压磁材料中断裂问题分析   总被引:12,自引:3,他引:12  
分析了功能梯度压电/压磁材料中裂纹在反平面剪切载荷下的断裂问题. 为了便于分析,假设材料性质沿着裂纹的法线方向呈指数变化. 利用Fourier变换,问题可以转化为对未知数是裂纹表面张开位移的一对对偶积分方程的求解,此对偶积分方程采用Schmidt方法求解. 最后分析了裂纹长度及表征功能梯度材料的参数βl对应力,电位移和磁通量强度因子的影响.  相似文献   

4.
Asymptotic expansion for the out of plane displacement field around a crack propagating along the gradient in a functionally graded material is developed. The irregular behavior of one of the terms in the expansion at low crack speeds is further examined and a remedial solution, which is well behaved at low crack speeds, is proposed. The developed out of plane displacement field is used to estimate stress intensity factor from quasi-static finite element solution. The results indicate that inclusion of the proposed nonhomogeneity specific terms gives estimates of stress intensity factor, which are consistent with existing analytical predictions.  相似文献   

5.
Summary A finite crack propagating at constant speed in a functionally graded piezoelectric strip (FGPS) bonded to a homogeneous piezoelectric strip is considered. It is assumed that the electroelastic material properties of the FGPS vary exponentially across the thickness of the strip, and that the bimaterial strip is under combined anti-plane mechanical shear and in-plane electrical loads. The analysis is conducted for the electrically unified crack boundary condition, which includes both the traditional permeable and the impermeable ones. By using the Fourier transform, the problem is reduced to the solution of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and the crack sliding displacement are presented to show the influences of the crack propagation speed, electric loads, FGPS gradation, crack length, electromechanical coupling coefficient, properties of the bonded homogeneous piezoelectric strip and crack location.  相似文献   

6.
The dynamic fracture problem for a functionally graded piezoelectric plate containing a crack perpendicular to the free boundaries is considered in this study. It is assumed that the electroelastic properties of the medium vary continuously in the thickness direction. Integral transform techniques and dislocation density function are employed to reduce the problem to the solution of a singular integral equation. Mode I dynamic energy density factors are presented for an internal crack as well as an edge crack for various values of dimensionless parameters representing the size and location of the crack and the material nonhomogeneity.  相似文献   

7.
Transient thermal dynamic analysis of stationary cracks in functionally graded piezoelectric materials (FGPMs) based on the extended finite element method (X-FEM) is presented. Both heating and cooling shocks are considered. The material properties are supposed to vary exponentially along specific direction while the crack-faces are assumed to be adiabatic and electrically impermeable. A dynamic X-FEM model is developed in which both Crank–Nicolson and Newmark time integration methods are used for calculating transient responses of thermal and electromechanical fields respectively. The generalized dynamic intensity factors for the thermal stresses and electrical displacements are extracted by using the interaction integral. The accuracy of the developed approach is verified numerically by comparing the calculated results with reference solutions. Numerical examples with mixed-mode crack problems are analyzed. The effects of the crack-length, poling direction, material gradation, etc. on the dynamic intensity factors are investigated. It shows that the transient dynamic crack behaviors under the cooling shock differ from those under the heating shock. The influence of the thermal shock loading on the dynamic intensity factors is significant.  相似文献   

8.
This paper considers the mode III crack problem in functionally graded piezoelectric materials. The mechanical and the electrical properties of the medium are considered for a class of functional forms for which the equilibrium equations have an analytical solution. The problem is solved by means of singular integral equation technique. Both a single crack and a series of collinear cracks are investigated. The results are plotted to show the effect of the material inhomogeneity on the stress and the electric displacement intensity factors.  相似文献   

9.
The basic solution of two parallel mode-I permeable cracks in functionally graded piezoelectric materials was studied in this paper using the generalized Almansi’s theorem. To make the analysis tractable, it was assumed that the shear modulus varies exponentially along the horizontal axis parallel to the crack. The problem was formulated through a Fourier transform into two pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surface. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. The solution of the present paper shows that the singular stresses and the singular electric displacements at the crack tips in functionally graded piezoelectric materials carry the same forms as those in homogeneous piezoelectric materials; however, the magnitudes of intensity factors depend on the gradient of functionally graded piezoelectric material properties. It was also revealed that the crack shielding effect is also present in functionally graded piezoelectric materials.  相似文献   

10.
Studied is the problem of a periodic array of cracks in a functionally graded piezoelectric strip bonded to a homogeneous piezoelectric material. The properties of the functionally graded piezoelectric strip, such as elastic modulus, piezoelectric constant and dielectric constant, are assumed in exponential forms and vary along the crack direction. The crack surface condition is assumed to be electrically impermeable or permeable. Integral transform and dislocation density functions are employed to reduce the problem to the solution of a system of singular integral equations. The effects of the periodic crack spacing, material constants and the geometry parameters on the stress intensity factor, the energy release ratio and the energy density factor are studied.  相似文献   

11.
Consider two bonded functionally graded piezoelectric material (FGPM) with finite height. Each material contains an arbitrary oriented crack. The material properties are assumed in exponential forms in the direction normal to the interface. The crack surface condition is assumed to be electrically impermeable or permeable. Using the Fourier transform technique, the problem can be reduced to a system of singular integral equations, which are then solved numerically by applying the Gauss-Chebyshev integration formula to obtain the stress intensity factors at the crack tips. Numerical calculations are carried out to obtain the energy density factor S and the energy release rate G. In impermeable case, the energy release rate has been shown to be negative as the electric loads are applied. The positive definite characteristic of the energy density factor makes it possible for predicting the fracture behavior of the cracked structure. The influences of the non-homogeneous parameters and crack orientation on the energy density factors at the crack tips are discussed in detail. The results show that the energy density factor at the crack tip will be increased when the crack tip is located within the softer material.  相似文献   

12.
In this paper, the interaction of two parallel Mode-I limited-permeable cracks in a functionally graded piezoelectric material was investigated by using the generalized Almansi's theorem. In the analysis, the electric permittivity of the air inside the crack was considered. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surface. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. The solution of the present paper shows that the singular stresses and the singular electric displacements at the crack tips in functionally graded piezoelectric materials carry the same forms as those in homogeneous piezoelectric materials; however, the magnitudes of intensity factors depend on the electric permittivity of the air inside the crack and the gradient parameter of functionally graded piezoelectric material properties. It was also revealed that the crack shielding effect is also present in functionally graded piezoelectric materials.  相似文献   

13.
Summary  In this paper, the dynamic anti-plane crack problem of two dissimilar homogeneous piezoelectric materials bonded through a functionally graded interfacial region is considered. Integral transforms are employed to reduce the problem to Cauchy singular integral equations. Numerical results illustrate the effect of the loading combination parameter λ, material property distribution and crack configuration on the dynamic stress and electric displacement intensity factors. It is found that the presence of the dynamic electric field could impede of enhance the crack propagation depending on the time elapsed and the direction of applied electric impact. Received 4 December 2001; accepted for publication 9 July 2002 This work is supported by the National Natural Science Foundation of China through Grant No. 10132010.  相似文献   

14.
To investigate the features of Love waves in a layered functionally graded piezoelectric structure, the mathematical model is established on the basis of the elastic wave theory, and the WKB method is applied to solve the coupled electromechanical field differential equation. The solutions of the mechanical displacement and electrical potential function are obtained for the piezoelectric layer and elastic substrate. The dispersion relations of Love waves are deduced for electric open and short cases on the free surface respectively. The actual piezoelectric layer–elastic substrate systems are taken into account, and some corresponding numerical examples are proposed comparatively. Thus, the effects of the gradient variation about material constants on the phase velocity, the group velocity, the coupled electromechanical factor and the cutoff frequency are discussed in detail. So the propagation behaviors of Love waves in inhomogeneous medium is revealed, and the dispersion and the anti-dispersion are analyzed. The conclusions are significant both theoretically and practically for the surface acoustic wave devices.  相似文献   

15.
The dynamic behavior of two parallel symmetric cracks in functionally graded piezoelectric/piezomagnetic materials subjected to harmonic antiplane shear waves is investigated using the Schmidt method. The present problem can be solved using the Fourier transform and the technique of dual integral equations, in which the unknown variables are jumps of displacements across the crack surfaces, not dislocation density functions. To solve the dual integral equations, the jumps of displacements across the crack surfaces are directly expanded as a series of Jacobi polynomials. Finally, the relations among the electric, magnetic flux, and dynamic stress fields near crack tips can be obtained. Numerical examples are provided to show the effect of the functionally graded parameter, the distance between the two parallel cracks, and the circular frequency of the incident waves upon the stress, electric displacement, and magnetic flux intensity factors at crack tips.  相似文献   

16.
The dynamic response of a functionally graded orthotropic strip with an edge crack perpendicular to the boundaries is studied. The material properties are assumed to vary continuously along the thickness direction. Laplace and Fourier transforms are applied to reduce the problem to a singular integral equation. Numerical results are presented to illustrate the influences of parameters such as the nonhomogeneity constant and geometry parameters on the dynamic stress intensity factors (SIFs).  相似文献   

17.
The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with mul- tiple parallel symmetric mode-III cracks.  相似文献   

18.
In this article, we study the axisymmetric tor-sional contact problem of a half-space coated with func-tionally graded piezoelectric material (FGPM) and subjected to a rigid circular punch. It is found that, along the thick-ness direction, the electromechanical properties of FGPMs change exponentially. We apply the Hankel integral trans-form technique and reduce the problem to a singular integral equation, and then numerically determine the unknown con-tact stress and electric displacement at the contact surface. The results show that the surface contact stress, surface azimuthal displacement, surface electric displacement, and inner electromechanical field are obviously dependent on the gradient index of the FGPM coating. It is found that we can adjust the gradient index of the FGPM coating to modify the distributions of the electric displacement and contact stress.  相似文献   

19.
In this paper, we develop a model to treat penny-shaped crack configuration in a piezoelectric layer of finite thickness. The piezoelectric layer is subjected to axially symmetric mechanical and electrical loads. Hankel transform technique is used to reduce the problem to the solution of a system of integral equations. A numerical solution for the crack tip fields is obtained for different crack radius and crack position.  相似文献   

20.
Summary In this paper, the behavior of a crack in functionally graded piezoelectric/piezomagnetic materials subjected to an anti-plane shear loading is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using a Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. These equations are solved using the Schmidt method. The relations among the electric displacement, the magnetic flux and the stress field near the crack tips are obtained. Numerical examples are provided to show the effect of the functionally graded parameter on the stress intensity factors of the crack.The authors are grateful for financial support from the Natural Science Foundation of Hei Long Jiang Province (A0301), the National Natural Science Foundation of China (50232030, 10172030), the Natural Science Foundation with Excellent Young Investigators of Hei Long Jiang Province(JC04-08) and the National Science Foundation with Excellent Young Investigators (10325208).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号