首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zonal flows in tokamak plasmas with toroidal rotation are theoretically investigated. It is found that the low-frequency branch of zonal flows, which is linearly stable in a nonrotating system, becomes linearly unstable in a rotating tokamak, and that the high-frequency branch of zonal flows, the geodesic acoustic mode, can propagate in the poloidal direction with the frequency significantly lower than the frequency of the standing wave geodesic acoustic mode in the nonrotating system.  相似文献   

2.
Intrinsic rotation has been observed in lower hybrid current-driven (LHCD) H-mode plasmas with type-III edge-localized modes (ELMs) on Experimental Advanced Superconducting Tokamak (EAST), and it is found that the edge toroidal rotation accelerated before the onset of the ELM burst. Magnetic perturbation analysis shows there is a perturbation amplitude growth below 30 kHz corresponding to the edge rotation acceleration. Using the filament model, the neoclassical toroidal viscosity (NTV) code shows there is a co-current NTV torque at the edge, which may be responsible for the edge rotation acceleration. For maximum displacement ~1 cm and toroidal mode number n=15, the calculated torque density is ~0.44 N/m2, comparable with the average edge toroidal angular momentum change rate ~1.24 N/m2. Here, the 1 cm maximum magnetic surface displacement estimated from the experimental observation corresponds to a maximum magnetic perturbation ~ 10?3–10?2 T, in accordance with magnetic perturbation measurements during ELMs. By varying n from 10 to 20, the magnitude of the edge NTV torque density is mainly ~0.1–1 N/m2. This significant co-current torque indicates that the NTV theory may be important in rotation problems during ELMs in H-mode plasmas. To better illuminate the problem, magnetic surface deformation obtained from other codes is desired for a more accurate calculation.  相似文献   

3.
The toroidal plasma rotation generated by the external momentum input and by the plasma itself (intrinsic rotation) has been separated through a novel momentum transport analysis in the JT-60U tokamak device. The toroidal rotation, which is not determined by the momentum transport coefficients and the external momentum input, has been observed. It is found that this intrinsic rotation is locally determined by the local pressure gradient and increases with increasing pressure gradient. This trend is almost the same for various plasmas: low and high confinement mode, co and counterrotating plasmas.  相似文献   

4.
采用回旋动理学方程推导得到了环向转动托卡马克等离子体中测地声模的色散关系,分析了环向转动对测地声模、低频模和声波分支的频率以及无碰撞阻尼率的影响。结果表明,测地声模的频率会随着环向转动马赫数而逐渐增大,而其无碰撞阻尼率则会随着环向转动马赫数而迅速减小。此外,低频模和声波分支的频率以及无碰撞阻尼率都会随着环向转动马赫数而逐渐减小,其中环向转动对声波分支的频率以及无碰撞阻尼率的影响非常小,基本上可以忽略。  相似文献   

5.
采用回旋动理学方程推导得到了环向转动托卡马克等离子体中测地声模的色散关系,分析了环向转动对测地声模、低频模和声波分支的频率以及无碰撞阻尼率的影响.结果表明,测地声模的频率会随着环向转动马赫数而逐渐增大,而其无碰撞阻尼率则会随着环向转动马赫数而迅速减小.此外,低频模和声波分支的频率以及无碰撞阻尼率都会随着环向转动马赫数而逐渐减小,其中环向转动对声波分支的频率以及无碰撞阻尼率的影响非常小,基本上可以忽略.  相似文献   

6.
采用流体模型理论推导了等熵平衡条件下环向转动托卡马克等离子体中带状流的色散关系。从理论上分析了环向转动对测地声模、低频带状流和声波的频率、压力和密度扰动量的影响。结果表明,环向转动对低频带状流的频率没有影响,但会使测地声模的频率逐渐增大。此外,存在环向转动时,低频带状流会具有驻波形式的压力和密度扰动量,且测地声模和声波可以沿着极向传播。而且还发现,等熵平衡可以看成是等温平衡的一种特殊情况。  相似文献   

7.
采用流体模型理论推导了等熵平衡条件下环向转动托卡马克等离子体中带状流的色散关系。从理论上分析了环向转动对测地声模、低频带状流和声波的频率、压力和密度扰动量的影响。结果表明,环向转动对低频带状流的频率没有影响,但会使测地声模的频率逐渐增大。此外,存在环向转动时,低频带状流会具有驻波形式的压力和密度扰动量,且测地声模和声波可以沿着极向传播。而且还发现,等熵平衡可以看成是等温平衡的一种特殊情况。  相似文献   

8.
9.
If βN exceeds no-wallβN, the plasma will be unstable because of external kink and resistive wall mode(RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in the experimental advanced superconducting tokamak(EAST) are simulated with CHEASE and MARS codes. A model using a one-dimensional(1D)surface to present the effect of the passive plate is proved to be credible. The no wall βN limit is about 3li, and the ideal wall βN limit is about 4.5li on EAST. It is found that the rotation near the q = 2 surface and the plasma edge affects the RWM more.  相似文献   

10.
Observations in the ASDEX Upgrade tokamak show a correlation between the gradient of the intrinsic toroidal rotation profile and the logarithmic gradient of the electron density profile. The intrinsic toroidal rotation in the center of the plasma reverses from co- to countercurrent when the logarithmic density gradients are large, and the turbulence is either dominated by trapped electron modes or is at the transition between ion temperature gradient and trapped electron modes. A study based on local gyrokinetic calculations suggests that the dominant trend in the observations can be explained by the combination of residual stresses produced by E × B and profile shearing mechanisms.  相似文献   

11.
The effect of an edge transport barrier on the toroidal field required for the ignition of an elongated tokamak is studied by modifying an analytic model which was calibrated against a transport code. It is found that the presence of the edge transport barrier will lead to a higher marginal toroidal field needed for ignition. This seemingly counter intuitive result is explained as being due to the equivalent effect of profile broadening by the edge transport barrier. This effect is further traced to its physical origin: in the case close to ignition, the fusion power input is predominantly concentrated in the center of plasma. It is demonstrated that if the fusion power input could be shifted from the center to the edge by a sufficient amount, then the presence of an edge transport barrier would lead to a reduction of the required toroidal field for ignition.  相似文献   

12.
Pfirsch-Schlüter fluxes in tokamaks are shown to drive strong poloidal and toroidal shear flows that are localized to the edge and scrape-off layer in the presence of temperature gradients and finite bootstrap current in the pedestal. Within a magnetohydrodynamic model, the effect of these flows on core rotation and their role in the magnetic configuration dependence of the power threshold for the low- (L-) to high- (H-)mode transition are discussed. Theoretical predictions based on symmetries of the underlying equations, coupled with computational results, are found to be in general agreement with observations in the Alcator C-Mod tokamak [Phys. Plasmas 12, 056111 (2005)10.1063/1.1876294].  相似文献   

13.
14.
Observation of a theoretically predicted peak in the neoclassical toroidal viscosity (NTV) force as a function of toroidal plasma rotation rate Ω is reported. The NTV was generated by applying n=3 magnetic fields from internal coils to low Ω plasmas produced with nearly balanced neutral beam injection. Locally, the peak corresponds to a toroidal rotation rate Ω(0) where the radial electric field E(r) is near zero as determined by radial ion force balance.  相似文献   

15.
A tokamak plasma discharge having an increase in duration accompanied with enhanced runaway electron flux has been experimentally studied in this paper. The discharges have been obtained by controlling the applied vertical magnetic field (BvapplB_{\rm{v}}^{\rm{appl}}) to below a critical value. Such discharges have been observed to have ‘negative edge plasma currents’, detected using an internal Rogowskii coil (IRC). We have tried to correlate the runaway behaviour with the negative edge plasma currents and have explained that these observations are a result of beam plasma instabilities.  相似文献   

16.
介绍了一种计算HL-2M装置环向场线圈自感的简捷方法,即用多个多边形电流丝模拟环向场线圈,用两个小直线段的互感求和代替多重积分,使问题得到简化。利用HL-2A装置的放电数据拟合计算了HL-2A装置环向场线圈的自感,从而验证了方法的正确性。  相似文献   

17.
18.
J-TEXT装置纵场电源系统及其调试   总被引:1,自引:1,他引:0  
J-TEXT装置的纵场磁体是由十六个近似圆形的常规铜线圈串联而成。纵场电源系统需要为纵场磁体提供最大电流为160kA、平顶时间为500ms的准梯形电流波形,以在等离子体中心产生最大为3T的磁场。基于原TEXT-U纵场电源的电路结构,重新设计和改造了电源的控制系统和保护系统。目前,纵场电源系统已经通过了测试,在J-TEXT装置首轮放电运行中,该系统可输出92.5kA的平顶电流,在等离子体中心产生了约1.74T的磁场。  相似文献   

19.
20.
Localized currents driven by pressure gradients play a pivotal role in the magnetohydrodynamic stability of toroidal plasma confinement devices. We have measured the currents generated in the edge of L- (low) and H- (high confinement) mode discharges on the DIII-D tokamak, utilizing the Zeeman effect in an injected lithium beam to obtain high resolution profiles of the poloidal magnetic field. We find current densities in excess of 1 MA/m2 in a 1 to 2 cm region near the peak of the edge pressure gradient. These values are sufficient to challenge edge stability theories based on specific current formation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号