首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emergence of cooperation still remains a fundamental conundrum in the social and behavior sciences. We introduce a new mechanism, deposit mechanism, into theoretical model to explore how this mechanism promotes cooperation in a well-mixed population. Firstly, we extend the common binary-strategy combination of cooperation and defection in public good game by adding a third strategy, namely, deposit cooperation. The players with deposit cooperation strategy pay a deposit in advance to obtain the benefits of public good at a lower contributions compared with the players with cooperation strategy, when the provision of public good is successful. Then, we explore the evolution of cooperation in the public good game with deposit by means of the replicator dynamics. Theoretical computations and stimulations show that the deposit mechanism can promote cooperation in a well-mixed population, and the numbers of equilibrium point are determined by variables of public good game. On the one hand, when the coexistence of cooperators and defectors is the stable equilibrium point in the evolutionary system, increasing the threshold of public good and adopting the weak altruism way for share benefits can enhance the level of cooperation in the population. On the other hand, if the coexistence of deposit cooperators and defectors is the stable equilibrium point, it is effective to promote the deposit cooperation by lowering the values of discount and deposit, and raising the threshold of public good.  相似文献   

2.
Coevolutionary dynamics is investigated in chemical catalysis, biological evolution, social and economic systems. The dynamics of these systems can be analyzed within the unifying framework of evolutionary game theory. In this Letter, we show that even in well-mixed finite populations, where the dynamics is inherently stochastic, biodiversity is possible with three cyclic-dominant strategies. We show how the interplay of evolutionary dynamics, discreteness of the population, and the nature of the interactions influences the coexistence of strategies. We calculate a critical population size above which coexistence is likely.  相似文献   

3.
We study the evolutionary Prisoner's dilemma game on scale-free networks, focusing on the influence of different initial distributions for cooperators and defectors on the evolution of cooperation. To address this issue, we consider three types of initial distributions for defectors: uniform distribution at random, occupying the most connected nodes, and occupying the lowest-degree nodes, respectively. It is shown that initial configurations for defectors can crucially influence the cooperation level and the evolution speed of cooperation. Interestingly, the situation where defectors initially occupy the lowest-degree vertices can exhibit the most robust cooperation, compared with two other distributions. That is, the cooperation level is least affected by the initial percentage of defectors. Moreover, in this situation, the whole system evolves fastest to the prevalent cooperation. Besides, we obtain the critical values of initial frequency of defectors above which the extinction of cooperators occurs for the respective initial distributions. Our results might be helpful in explaining the maintenance of high cooperation in scale-free networks.  相似文献   

4.
Conditional interactions are common in both human and animal societies. To understand the impacts of this feature on the evolution of cooperation, we propose a modified public goods game combined with conditional interactions in terms of the aspiration payoffs. Through simulations, we find that the function of the fraction of cooperators and the synergy factor is non-monotonic. This indicates that a large synergy factor is not always in favor of the promotion of cooperation. In addition, for a high aspiration, the typical coexistence state of cooperators and defectors could disappear, and the system demonstrates a sharp transition from the complete defection state to the complete cooperation state as the synergy factor increases. Furthermore, an interesting critical phenomenon is found in a finite system, i.e., the system can randomly evolve into a complete defection state or a complete cooperation state. An explanation of these evolutionary outcomes is provided in this paper, which is in agreement with the simulation results.  相似文献   

5.
Jing Wang  Xiaojie Chen 《Physica A》2010,389(1):67-78
We investigate the impacts of migration on the evolutionary game dynamics in finite populations with community structures in the framework of evolutionary game theory. In contrast to deterministic dynamics, our model incorporates stochastic factors induced by the finite population size. Based on the analysis of the stationary distribution of the evolutionary process in the limit of rare mutations, we prove that it is most likely to find the population in the community where all individuals have the lower migration rate. Furthermore, we show that reducing the difference between the migration rates of distinct communities can increase the first hitting time to the homogeneous absorbing state and can prolong the coexistence time of different species, promoting the conservation of biodiversity.  相似文献   

6.
We study the evolutionary Prisoner’s Dilemma game among individuals endowed with adaptively interaction intensity. Individuals adjust their interaction intensity according to the rules “payoff increase-high intensity, payoff decrease-low intensity”: if an individual’s payoff increases compared with that in the previous generation, he raises his interaction intensity; otherwise, he reduces the probability of interaction. We find that if individuals can adjust their interaction intensity with a proper scale, cooperation can be promoted. Interestingly, individuals with low interaction intensity usually hold the boundary of cooperator cluster. Such spatial distribution can alleviate the exploitation from defectors to cooperators since the interaction between cooperators and defectors is weakened. We hope our work can yield some insight into investigation of the evolution of cooperation in structured population.  相似文献   

7.
Evolutionary game dynamics in finite size populations can be described by a fitness-dependent Wright-Fisher process. We consider symmetric 2$\times $2 games in a well-mixed population. In our model, two parameters to describe the level of player's rationality and noise intensity in environment are introduced. In contrast with the fixation probability method that used in a noiseless case, the introducing of the noise intensity parameter makes the process an ergodic Markov process and based on the limit distribution of the process, we can analysis the evolutionary stable strategy (ESS) of the games. We illustrate the effects of the two parameters on the ESS of games using the Prisoner's dilemma games (PDG) and the snowdrift games (SG). We also compare the ESS of our model with that of the replicator dynamics in infinite size populations. The results are determined by simulation experiments.  相似文献   

8.
We study the stochastic evolutionary public goods game with punishment in a finite size population. Two kinds of costly punishments are considered, i.e., first-order punishment in which only the defectors are punished, and second-order punishment in which both the defectors and the cooperators who do not punish the defective behaviors are punished. We focus on the stochastic stable equilibrium of the system. In the population, the evolutionary process of strategies is described as a finite state Markov process. The evolutionary equilibrium of the system and its stochastic stability are analyzed by the limit distribution of the Markov process. By numerical experiments, our findings are as follows.(i) The first-order costly punishment can change the evolutionary dynamics and equilibrium of the public goods game, and it can promote cooperation only when both the intensity of punishment and the return on investment parameters are large enough.(ii)Under the first-order punishment, the further imposition of the second-order punishment cannot change the evolutionary dynamics of the system dramatically, but can only change the probability of the system to select the equilibrium points in the "C+P" states, which refer to the co-existence states of cooperation and punishment. The second-order punishment has limited roles in promoting cooperation, except for some critical combinations of parameters.(iii) When the system chooses"C+P" states with probability one, the increase of the punishment probability under second-order punishment will further increase the proportion of the "P" strategy in the "C+P" states.  相似文献   

9.
Eleni Arapaki 《Physica A》2009,388(13):2757-2761
We study the spatial prisoner’s dilemma game where the players are located on the nodes of a random scale-free network. The prisoner’s dilemma game is a powerful tool and has been used for the study of mutual trust and cooperation among individuals in structured populations. We vary the structure of the network and the payoff values for the game, and show that the specific conditions can greatly influence the outcome of the game. A variety of behaviors are reproduced and the percentage of cooperating agents fluctuates significantly, even in the absence of irrational behavior. For example, the steady state of the game may be a configuration where either cooperators or defectors dominate, while in many cases the solution fluctuates between these two limiting behaviors.  相似文献   

10.
The Prisoner’s Dilemma and Snowdrift games are the main theoretical constructs used to study the evolutionary dynamics of cooperation. In large, well-mixed populations, mean-field models predict a stable equilibrium abundance of all defectors in the Prisoner’s Dilemma and a stable mixed-equilibrium of cooperators and defectors in the Snowdrift game. In the spatial extensions of these games, which can greatly modify the fates of populations (including allowing cooperators to persist in the Prisoner’s Dilemma, for example), lattice models are typically used to represent space, individuals play only with their nearest neighbours, and strategy replacement is a function of the differences in payoffs between neighbours. Interestingly, certain values of the cost–benefit ratio of cooperation, coupled with particular spatial configurations of cooperators and defectors, can lead to ‘global standoffs’, a situation in which all cooperator–defector neighbours have identical payoffs, leading to the development of static spatial patterns. We start by investigating the conditions that can lead to ‘local standoffs’ (i.e., in which isolated pairs of neighbouring cooperators and defectors cannot overtake one another), and then use exhaustive searches of small square lattices (4×44×4 and 6×66×6) of degree k=3,k=4k=3,k=4, and k=6k=6, to show that two main types of global standoff patterns–‘periodic’ and ‘aperiodic’–are possible by tiling local standoffs across entire spatially structured populations. Of these two types, we argue that only aperiodic global standoffs are likely to be potentially attracting, i.e., capable of emerging spontaneously from non-standoff conditions. Finally, we use stochastic simulation models with comparatively large lattices (100×100100×100) to show that global standoffs in the Prisoner’s Dilemma and Snowdrift games do indeed only (but not always) emerge under the conditions predicted by the small-lattice analysis.  相似文献   

11.
Traditional evolutionary games assume uniform interaction rate, which means that the rate at which individuals meet and interact is independent of their strategies. But in some systems, especially biological systems, the players interact with each other discriminately. Taylor and Nowak (2006) were the first to establish the corresponding non-uniform interaction rate model by allowing the interaction rates to depend on strategies. Their model is based on replicator dynamics which assumes an infinite size population. But in reality, the number of individuals in the population is always finite, and there will be some random interference in the individuals' strategy selection process. Therefore, it is more practical to establish the corresponding stochastic evolutionary model in finite populations. In fact, the analysis of evolutionary games in a finite size population is more difficult. Just as Taylor and Nowak said in the outlook section of their paper, "The analysis of non-uniform interaction rates should be extended to stochastic game dynamics of finite populations." In this paper, we are exactly doing this work. We extend Taylor and Nowak's model from infinite to finite case, especially focusing on the influence of non-uniform connection characteristics on the evolutionary stable state of the system. We model the strategy evolutionary process of the population by a continuous ergodic Markov process. Based on the limit distribution of the process, we can give the evolutionary stable state of the system. We make a complete classification of the symmetric 2×2 games. For each case game, the corresponding limit distribution of the Markov-based process is given when noise intensity is small enough. In contrast with most literatures in evolutionary games using the simulation method, all our results obtained are analytical. Especially, in the dominant-case game, coexistence of the two strategies may become evolutionary stable states in our model. This result can be used to explain the emergence of cooperation in the Prisoner is Dilemma Games to some extent. Some specific examples are given to illustrate our results.  相似文献   

12.
We study the evolution of interacting individuals located on the sites of a regular lattice. The individuals play a two action game in which the players either cooperate or defect with respect to a certain issue. The main rule of the game is that a player does not change his action when he and his opponent have held the same action in the previous round. Numerical simulations performed on a square lattice show a stationary state in which the lattice has a finite number of cooperators and defectors and two frozen states, one full of cooperators and the other full of defectors.  相似文献   

13.
Why would natural selection favor the prevalence of cooperation within the groups of selfish individuals? A fruitful framework to address this question is evolutionary game theory, the essence of which is captured in the so-called social dilemmas. Such dilemmas have sparked the development of a variety of mathematical approaches to assess the conditions under which cooperation evolves. Furthermore, borrowing from statistical physics and network science, the research of the evolutionary game dynamics has been enriched with phenomena such as pattern formation, equilibrium selection, and self-organization. Numerous advances in understanding the evolution of cooperative behavior over the last few decades have recently been distilled into five reciprocity mechanisms: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity. However, when social viscosity is introduced into a population via any of the reciprocity mechanisms, the existing scaling parameters for the dilemma strength do not yield a unique answer as to how the evolutionary dynamics should unfold. Motivated by this problem, we review the developments that led to the present state of affairs, highlight the accompanying pitfalls, and propose new universal scaling parameters for the dilemma strength. We prove universality by showing that the conditions for an ESS and the expressions for the internal equilibriums in an infinite, well-mixed population subjected to any of the five reciprocity mechanisms depend only on the new scaling parameters. A similar result is shown to hold for the fixation probability of the different strategies in a finite, well-mixed population. Furthermore, by means of numerical simulations, the same scaling parameters are shown to be effective even if the evolution of cooperation is considered on the spatial networks (with the exception of highly heterogeneous setups). We close the discussion by suggesting promising directions for future research including (i) how to handle the dilemma strength in the context of co-evolution and (ii) where to seek opportunities for applying the game theoretical approach with meaningful impact.  相似文献   

14.
The co-evolutionary dynamics of a cyclic game system is investigated in a two-dimensional square lattice with the asymmetrical rates for three species. Different with the well-mixed system, coexistence and extinction emerge alternately in the system, where a "zero-one" behavior is robust for a small population size, whereas, the system is predominated by coexistence for a big population one. We study in detail the influence about the fluctuation to the change of the state, and find that the difference between the maximal amplitude about the fluctuation and the average intensity determines which state the system is ultimately. In addition, we introduce Ports energy to explain the reason of the "zero-one" behavior. It is shown that the average Ports energy per site is the distance to the "zero-one" behavior in the model.  相似文献   

15.
We investigate an evolutionary prisoner’s dilemma game among self-driven agents, where collective motion of biological flocks is imitated through averaging directions of neighbors. Depending on the temptation to defect and the velocity at which agents move, we find that cooperation can not only be maintained in such a system but there exists an optimal size of interaction neighborhood, which can induce the maximum cooperation level. When compared with the case that all agents do not move, cooperation can even be enhanced by the mobility of individuals, provided that the velocity and the size of neighborhood are not too large. Besides, we find that the system exhibits aggregation behavior, and cooperators may coexist with defectors at equilibrium.  相似文献   

16.
We study the evolution of cooperation in structured populations within popular models of social dilemmas, whereby simple coevolutionary rules are introduced that may enhance players abilities to enforce their strategy on the opponent. Coevolution thus here refers to an evolutionary process affecting the teaching activity of players that accompanies the evolution of their strategies. Particularly, we increase the teaching activity of a player after it has successfully reproduced, yet we do so depending on the disseminated strategy. We separately consider coevolution affecting either only the cooperators or only the defectors, and show that both options promote cooperation irrespective of the applied game. Opposite to intuitive reasoning, however, we reveal that the coevolutionary promotion of players spreading defection is, in the long run, more beneficial for cooperation than the likewise promotion of cooperators. We explain the contradictive impact of the two considered coevolutionary rules by examining the differences between resulting heterogeneities that segregate participating players, and furthermore, demonstrate that the influential individuals completely determine the final outcome of the games. Our findings are immune to changes defining the type of considered social dilemmas and highlight that the heterogeneity of players, resulting in a positive feedback mechanism, is a fundamental property promoting cooperation in groups of selfish individuals.  相似文献   

17.
全吉  王先甲 《中国物理 B》2011,20(3):30203-030203
By using a generalized fitness-dependent Moran process, an evolutionary model for symmetric 2×2 games in a well-mixed population with a finite size is investigated. In the model, the individuals' payoff accumulating from games is mapped into fitness using an exponent function. Both selection strength β and mutation rate ε are considered. The process is an ergodic birth-death process. Based on the limit distribution of the process, we give the analysis results for which strategy will be favoured when ε is small enough. The results depend on not only the payoff matrix of the game, but also on the population size. Especially, we prove that natural selection favours the strategy which is risk-dominant when the population size is large enough. For arbitrary β and ε values, the 'Hawk--Dove' game and the 'Coordinate' game are used to illustrate our model. We give the evolutionary stable strategy (ESS) of the games and compare the results with those of the replicator dynamics in the infinite population. The results are determined by simulation experiments.  相似文献   

18.
When more than one pedestrian want to move to the same site,conflicts appear and thus the involved pedestrians play a motion game.In order to describe the emergence of cooperation during the conflict resolving process,an evolutionary cellular automation model is established considering the effect of aspiration and mean gain.In each game,pedestrian may be gentle cooperator or aggressive defector.We propose a set of win-stay-lose-shrift WSLS like rules for updating pedestrian's strategy.These rules prescribe that if the mean gain of current strategy between some given steps is larger than aspiration the strategy keeps,otherwise the strategy changes.The simulation results show that a high level aspiration will lead to more cooperation.With the increment of the statistic length,pedestrians will be more rational in decision making.It is also found that when the aspiration level is small enough and the statistic length is large enough all the pedestrian will turn to defectors.We use the prisoner's dilemma model to explain it.At last we discuss the effect of aspiration on fundamental diagram.  相似文献   

19.
Considering the inertia of individuals in real life, we propose a modified Fermi updating rule, where the inertia of players is introduced into evolutionary prisoner's dilemma game (PDG) on square lattices. We mainly focus on how the inertia affects the cooperative behavior of the system. Interestingly, we find that the cooperation level has a nonmonotonic dependence on the inertia: with small inertia, cooperators will soon be invaded by defectors; with large inertia, players are unwilling to change their strategies and the cooperation level remains the same as the initial state; while a moderate inertia can induce the highest cooperation level. Moreover, effects of environmental noise and individual inertia are studied. Our work may be helpful in understanding the emergence and persistence of cooperation in nature and society.  相似文献   

20.
Considering the inertia of individuals in real life,we propose a modified Fermi updating rule,where the inertia of players is introduced into evolutionary prisoner's dilemma game(PDG) on square lattices.We mainly focus on how the inertia affects the cooperative behavior of the system.Interestingly,we find that the cooperation level has a nonmonotonic dependence on the inertia:with small inertia,cooperators will soon be invaded by defectors;with large inertia,players are unwilling to change their strategies and the cooperation level remains the same as the initial state;while a moderate inertia can induce the highest cooperation level.Moreover,effects of environmental noise and individual inertia are studied.Our work may be helpful in understanding the emergence and persistence of cooperation in nature and society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号