首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
邓真渝  章林溪 《物理学报》2015,64(16):168201-168201
采用非平衡态分子动力学方法研究了二维复杂囊泡在剪切流中的动力学行为. 模拟发现了复杂囊泡经典的翻滚(tumbling)、摇摆(trembling)和坦克履(tank-treading)行为, 还观察到由坦克履行为向平动行为(translating)的转变. 囊泡的平动行为与剪切率大小、复杂囊泡的形状密切相关. 当大囊泡均匀嫁接较多数目的小囊泡后, 其平动方式消失. 该研究有益于加深对囊泡在剪切流场中复杂性行为的理解.  相似文献   

2.
3.
We study numerically the formation of long-lived transient shear bands during shear startup within two models of soft glasses (a simple fluidity model and an adapted "soft glassy rheology" model). The degree and duration of banding depends strongly on the applied shear rate, and on sample age before shearing. In both models the ultimate steady flow state is homogeneous at all shear rates, consistent with the underlying constitutive curve being monotonic. However, particularly in the soft glassy rheology case, the transient bands can be extremely long lived. The banding instability is neither "purely viscous" nor "purely elastic" in origin, but is closely associated with stress overshoot in startup flow.  相似文献   

4.
A thermodynamic approach is used to describe the distribution of particles of a disperse phase in a plane laminar flow. The effect of the density, shape, and velocity of disperse particles in the flow is considered. Conditions are described under which various modes of stratification of the flow (near-wall, central, intermediate, and multilayer modes) arise. The equilibrium distributions obtained are self-similar; this allows one to compare the behavior of colloidal, highly disperse, coarsely disperse, and coarse-grain systems for various shear velocities and flow widths.  相似文献   

5.
The assessment of viscoelastic properties of soft tissues is enjoying a growing interest in the field of medical imaging as pathologies are often correlated with a local change of stiffness. To date, advanced techniques in that field have been concentrating on the estimation of the second order elastic modulus (mu). In this paper, the nonlinear behavior of quasi-incompressible soft solids is investigated using the supersonic shear imaging technique based on the remote generation of polarized plane shear waves in tissues induced by the acoustic radiation force. Applying a theoretical approach of the strain energy in soft solid [Hamilton et al., J. Acoust. Soc. Am. 116, 41-44 (2004)], it is shown that the well-known acoustoelasticity experiment allowing the recovery of higher order elastic moduli can be greatly simplified. Experimentally, it requires measurements of the local speed of polarized plane shear waves in a statically and uniaxially stressed isotropic medium. These shear wave speed estimates are obtained by imaging the shear wave propagation in soft media with an ultrafast echographic scanner. In this situation, the uniaxial static stress induces anisotropy due to the nonlinear effects and results in a change of shear wave speed. Then the third order elastic modulus (A) is measured in agar-gelatin-based phantoms and polyvinyl alcohol based phantoms.  相似文献   

6.
X-ray Photon Correlation Spectroscopy was used to measure the diffusive dynamics of colloidal particles in a shear flow. The results presented here show how the intensity autocorrelation functions measure both the diffusive dynamics of the particles and their flow-induced, convective motion. However, in the limit of low flow/shear rates, it is possible to obtain the diffusive component of the dynamics, which makes the method suitable for the study of the dynamical properties of a large class of complex soft-matter and biological fluids. An important benefit of this experimental strategy over more traditional X-ray methods is the minimization of X-ray-induced beam damage. While the method can be applied also for photon correlation spectroscopy in the visible domain, our analysis shows that the experimental conditions under which it is possible to measure the diffusive dynamics are easier to achieve at higher q values (with X-rays).  相似文献   

7.
Soft materials such as colloidal suspensions, polymer solutions and liquid crystals are constituted by mesoscopic entities held together by weak forces. Their mechanical moduli are several orders of magnitude lower than those of atomic solids. The application of small to moderate stresses to these materials results in the disruption of their microstructures. The resulting flow is non-Newtonian and is characterized by features such as shear rate-dependent viscosities and non-zero normal stresses. This article begins with an introduction to some unusual flow properties displayed by soft matter. Experiments that report a spectrum of novel phenomena exhibited by these materials, such as turbulent drag reduction, elastic turbulence, the formation of shear bands and the existence of rheological chaos, flow-induced birefringence and the unusual rheology of soft glassy materials, are reviewed. The focus then shifts to observations of the liquid-like response of granular media that have been subjected to external forces. The article concludes with examples of the patterns that emerge when certain soft materials are vibrated, or when they are displaced with Newtonian fluids of lower viscosities.  相似文献   

8.
We report a simple experiment in freestanding smectic films in which elastic distortions of the c director drive macroscopic flow. The flow field is visualized with tracer particles. Measurements are compared to predictions of a model that employs the coupled dynamic equations for director and velocity fields. Relaxation dynamics depends on the topology of the film center: for defect-free target patterns, shear flow provides the dominating contribution to the c director dynamics. In presence of a central topological defect of strength S = + 1, the influence of flow on the relaxation dynamics is practically negligible, while for a central S = - 1 defect, the influence of vortex flow on the c-director relaxation is roughly twice as large as for the defect-free state.  相似文献   

9.
臧渡洋  张永建 《物理学报》2011,60(7):76801-076801
本文采用两个互相垂直的Wilhelmy片对不同润湿性的SiO2纳米颗粒单层膜的表面压和黏弹性进行了研究, 并利用Brewster角显微镜(BAM)对单层膜的形貌演变进行了观测. 实验发现, 当水面完全被颗粒覆盖时, 单层膜的表面压具有明显的各向异性, 中等润湿性(34%SiOH)的颗粒膜其表面压各向异性最大. 压缩模量E和剪切模量G均在中等润湿性时出现最大值. 这些结果表明, 单层膜的流变性能与泡沫的稳定性密切相关. 疏水性最强(20%SiOH)的颗粒膜具 关键词: 纳米颗粒 单层膜 表面压 流变  相似文献   

10.
11.
A lattice Boltzmann method (LBM) for two-phase flows containing solid bodies with viscoelastic membranes is proposed. The method is based on the two-phase LBM, in which one phase is regarded as the solid phase. In the present model, the membrane is assumed to be composed of identical particles that are connected to their neighboring particles by elastic springs to take account of stretching and compression effects. The method is applied to two representative problems, namely the behavior of a viscoelastic body under shear flow and the motion of a viscoelastic body in a Poiseuille flow. Tank-tread motion and axial migration, which are both characteristic of the motion of viscoelastic bodies, are simulated by using the method. These results indicate that the method is capable of simulating the complex behavior of viscoelastic bodies in capillaries, such as the motion of red blood cells in blood flows.  相似文献   

12.
A facile technique with only one step for fabrication of anisotropic colloidal particles at the air/water interface is demonstrated. Anisotropic colloidal particles with controlled shapes can be easily obtained by tuning the incubation time in solvent vapor at room temperature. The formation of separate anisotropic particles is attributed to the lateral stretch on the particles by the interfacial forces and repulsion among the neighboring particles by the generation of the polymer solution flows. To further explain the proposed formation mechanism of the colloidal particles with shape anisotropy, an in situ experiment is designed for direct observation of the arrangement change of the colloidal particles. This fabrication technique is general and applicable to polymer colloidal particles with various initial sizes ranging from microscale to nanoscale. Moreover, the elastic properties of the anisotropic colloidal particles are measured which exhibit a prominent change with different shapes and the change trend of the elastic moduli is similar for particles with different original sizes. This work provides a versatile approach for fabrication of anisotropic colloidal particles with tunable shapes and sizes and establishes the interplay between particle shape and elastic property, which is much valuable for further research on the effect of particle parameters on drug delivery process.  相似文献   

13.
An improved penalty immersed boundary method (pIBM) has been proposed for simulation of flow-induced deformation of three-dimensional (3D) elastic capsules. The motion of the capsule membrane is described in the Lagrangian coordinates. The membrane deformation takes account of the bending and twisting effects as well as the stretching and shearing effects. The method of subdivision surfaces is adopted to generate the mesh of membrane and the corresponding shape functions, which are required to be C1 continuous. The membrane motion is then solved by the subdivision-surface based finite element method on the triangular unstructured mesh. On the other hand, the fluid motion is defined on the Eulerian domain, and is advanced by the fractional step method on a staggered Cartesian grid. Coupling of the fluid motion and the membrane motion is realized in the framework of the pIBM. Using the proposed method, deformation of 3D elastic capsules in a linear shear flow is studied in detail, and validations are examined by comparing with previous studies. Both the neo-Hookean membrane and the Skalak membrane are tested. For an initially spherical capsule the tank-treading motion is formed under various dimensionless shear rates and reduced bending moduli. It is found that buckling occurs near the equator of the capsule for small shear rates but near the tips for large shear rates, which is suppressed by including the bending rigidity of the membrane. Effects of the Reynolds number and the membrane density are investigated for an initially spherical capsule. For a non-spherical capsule, with the initial shape of the oblate spheroid or the biconcave circular disk as a model of the red blood cell, the swinging motion is observed due to the shape memory effect. By decreasing the dimensionless shear rate or increasing the reduced bending modulus, the swinging motion is transited into the tumbling motion.  相似文献   

14.
固液两相流中微对流强化的机理分析与数值模拟   总被引:4,自引:1,他引:3  
本文对分散型固液两相混合物层流管流中非均匀剪切力场导致的微对流现象以及由此引起的导热系数增强效应作了机理和影响因素分析,认为除速度分布、颗粒浓度和粒径以外,还存在颗粒形状、粒径分布,壁面热流方向、颗粒表面性质及其与载流介质间的相容性等多个影响因素.模拟计算表明,由微对流导致的对流换热强化与流体在管壁面上的表观导热系数强化具有相同的数量。  相似文献   

15.
Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.  相似文献   

16.
The driven self-assembly behaviors of hard nanoplates on soft elastic shells are investigated by using molecular dynamics(MD) simulation method, and the driven self-assembly structures of adsorbed hard nanoplates depend on the shape of hard nanoplates and the bending energy of soft elastic shells. Three main structures for adsorbed hard nanoplates,including the ordered aggregation structures of hard nanoplates for elastic shells with a moderate bending energy, the collapsed structures for elastic shells with a low bending energy, and the disordered aggregation structures for hard shells,are observed. The self-assembly process of adsorbed hard nanoplates is driven by the surface tension of the elastic shell,and the shape of driven self-assembly structures is determined on the basis of the minimization of the second moment of mass distribution. Meanwhile, the deformations of elastic shells can be controlled by the number of adsorbed rods as well as the length of adsorbed rods. This investigation can help us understand the complexity of the driven self-assembly of hard nanoplates on elastic shells.  相似文献   

17.
The ground state of nonellipsoidal particles can be inhomogeneous due to the effect of a demagnetizing field. The approach proposed here for studying such particles is based on the combination of symmetry analysis and perturbation theory. The general formulation of this approach, which makes it possible to analyze weakly inhomogeneous states for particles with a complex shape, is considered. The ground state of cubic particles of magnetically soft materials is calculated analytically, and the effect of small strains of cubic particles on the magnetization distribution in the particles is investigated. It is shown for the example of magnetically soft cubic particles that even a small deviation of the particle shape from symmetrical may result in the realization of a special magnetic state in such particles, in which the symmetry in the magnetization distribution is lower than the particle symmetry. A change in the parameters of a particle can substantially modify its magnetic properties and may even induce a phase transition to a state with a different symmetry.  相似文献   

18.
海底沉积物压缩波速度与切变波速度的关系   总被引:3,自引:1,他引:3       下载免费PDF全文
邹大鹏  刘伟  龙建军 《声学学报》2018,43(6):951-960
基于连续介质假设,根据无吸收各向同性弹性介质通用方程分析沉积物声波传播关系,提出应用弹性结构分布因子表达的声速通用模型(GMSS,General Model of Sound Speed)分析海底沉积物的声速特性;通过研究Willey时间平均模型、Wood方程、Gassmann方程、Buckingham模型、Biot-Stoll模型和EDFM模型,可以表述成GMSS通用模型中的弹性结构分布因子的具体表达形式,得出GMSS通用模型在解释压缩波速度和切变波速度特性上具有一致性的特点。GMSS通用模型具有弹性结构分布因子、孔隙度、孔隙海水的等效密度和等效弹性模量、固相颗粒的等效密度、固相颗粒的等效体积弹性模量和等效切变弹性模量共7个参数,为研究海底沉积物压缩波和切变波速度提供了一种模型简单、参数少、通用性强的方法。但也需要从物理结构上以及应力应变关系上开展更为深入的分析和探寻GMSS模型的物理意义和参数测量的方法。   相似文献   

19.
Here we investigate the flow properties of suspensions of dicolloidal particles composed of interpenetrating spheres where one sphere is rich in polystyrene and the second is rich in poly 2-vinyl pyridine. The synthesis method is designed to create both anisotropic shape and anisotropic interaction potentials that should lead to head to tail clustering. These particles are referred to as copolymer dicolloids (CDCs). The viscoelastic properties of stable and gelled suspensions of CDC particles are compared with analogs composed of homopolymer dicolloids (HDCs), having the same shape but not displaying the anisotropic attractions. After coating the particles with a nonionic surfactant to minimize van der Waals attractions, the flow properties of glassy and gelled suspensions of CDCs and HDCs are studied as a function of volume fraction, ionic strength and pH. Suspensions of HDC particles display a high kinetic arrest volume fraction (?(g)?>?0.5) over a wide range of pH and ionic strength up to [I]=0.5?M, demonstrating that the particles experience repulsive or weakly attractive pair potentials. Suspensions of CDC particles behave in a similar manner at high or low pH when [I]=0.001?M, but gel at a volume fraction of ?(g)?相似文献   

20.
 在爆炸压实过程中,纳米颗粒所受冲击载荷发生显著变化的时间远远大于应力波传过颗粒特征长度所用时间;同时,陶瓷颗粒在爆炸冲击过程中主要表现为脆性。基于以上两个事实提出了弹性假设,推导了颗粒在压实过程中的受力状态。回顾了判断脆性材料破坏的三个准则,即Hugonoit弹性极限、动态屈服强度和理论剪切强度,并从这三种判据的交集值出发来判断爆炸压实过程中陶瓷颗粒是否有发生破碎的可能。通过具体计算得出颗粒内存在两个最大剪应力的位置:一个位置发生在距颗粒接触面0.5 nm范围以内,此处剪应力最大;另一个位置发生在距接触面较远处。这一结果为解释陶瓷粉末颗粒在爆炸压实过程中存在塑性行为和破碎行为提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号