首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of the canonical Monte Carlo simulations, the vapor-liquid (VL) equilibrium and structure of square well (SW) fluids confined in a single cylindrical pore with repulsive surface, have been studied. Coexistence curves of the confined VL interface are determined for a wide range of temperatures and pore diameters. It is demonstrated that the confinement not only reduces the VL coexistence region but also induces strong inhomogeneities of the VL interface: coexistence liquid densities are different at the pore center and at the wall surface. It may be considered as a preliminary step for an isolated droplet formation inside the pore, as well as a tentative reason of the two VL phase transitions of simple fluids adsorbed into disordered porous media.  相似文献   

2.
Using methods of x-ray diffraction analysis, differential scanning calorimetry, dilatometry, and transmission electron microscopy, we have investigated the initial stages of decay of the amorphous phase in a bulk metallic glass based on zirconium. We found that crystallization of the bulk metallic glass proceeds in several stages, where in the first stage the bulk conversion effect is equal to more than 1.6%, or about 80% of the total bulk crystallization effect. We showed that the first stage of decay of the amorphous phase in the bulk metallic glass Zr29Ti11Cu60 leads to the formation of a nanocrystalline structure with a grain size of 1–5 nm. We have analyzed the change in the shape of the diffraction maximum during the formation of the very fine nanocrystalline structure. Fiz. Tverd. Tela (St. Petersburg) 41, 1129–1133 (July 1999)  相似文献   

3.
We present a surface x-ray diffraction study on the KDP-water interface in which the structure of both the crystalline and liquid part of the interface has been measured. We have been able to determine the ordering components in the liquid in both the perpendicular and parallel directions. We find interface-induced ordering in the first four layers of water molecules. The first two layers behave icelike and are strongly bound to the surface. The next two layers are more diffuse and show only minor lateral and perpendicular ordering. Subsequent layers are found to behave similar to a bulk liquid.  相似文献   

4.
Crystallization of n-hexadecane in emulsion droplets was studied using time-resolved two-dimensional small- and wide-angle x-ray scattering with differential scanning calorimetry (2D-SAXS-WAXS-in situ DSC) which provides information about both nano- and subnanoscale structural change. n-hexadecane in droplets reproducibly crystallized into the stable triclinic phase via a transient-rotator phase. This is in contrast with previous results that the rotator phase of n-hexadecane was observed only occasionally for bulk samples. Thus we confirmed the existence of rotator phase in n-hexadecane, which is important for the study of crystallization of soft materials. We suggest that the rotator phase at the interface of oil and water plays a precursor role for bulk crystallization. This study demonstrates that 2D-SAXS-WAXS-in situ DSC is a powerful tool for the study of a transient phase.  相似文献   

5.
The possible formation of a nanocrystalline structure in controlled crystallization of a bulk Zr50Ti16Cu15Ni19 amorphous alloy has been studied using differential scanning calorimetry, transmission and high-resolution electron microscopy, and x-ray diffraction. It was established that crystallization of the alloy at temperatures above the glass formation point occurs in two stages and brings about the formation of a nanocrystalline structure consisting of three phases. Local spectral x-ray analysis identified the composition and structure of the phases formed.  相似文献   

6.
The high-pressure polymorphs and structural transformation of Sn were experimentally investigated using angledispersive synchrotron x-ray diffraction up to 108.9 GPa. The results show that at least at 12.8 GPa β-Sn→bct structure transformation was completed and no two-phase coexistence was found. By using a long-wavelength x-ray, we resolved the diffraction peaks splitting and discovered the formation of a new distorted orthorhombic structure bco from the bct structure at 31.8 GPa. The variation of the lattice parameters and their ratios with pressure further validate the observation of the bco polymorph. The bcc structure appears at 40.9 GPa and coexists with the bco phase throughout a wide pressure range of40.9 GPa–73.1 GPa. Above 73.1 GPa, only the bcc polymorph is observed. The systematically experimental investigation confirms the phase transition sequence of Sn as β-Sn→bct→bco→ bco + bcc→bcc upon compression to 108.9 GPa at room temperature.  相似文献   

7.
王晓亮  陈硕 《物理学报》2010,59(10):6778-6785
传统的耗散粒子动力学方法(DPD)由于采用了纯排斥的守恒力相互作用,从而不能适应液气共存或者带有自由面流体的模拟.这里研究了DPD方法中新近提出的一种短程排斥、长程吸引相互作用,探索了这种改进势能对于DPD方法模拟液气共存的能力.模拟了这种新势能所形成的液气过渡界面,计算了过渡界面区的应力分布,发现应力分布与多体DPD方法所得结果一致.进一步对表面张力进行了研究,验证了这种势能所形成的界面满足Laplace定律,而通过理论公式与Laplace定律分别所得到的表面张力也彼此相符。  相似文献   

8.
We report evidence for phase coexistence of orbital orderings of different symmetry in SmVO3 by high resolution x-ray powder diffraction. The phase coexistence is triggered by an antiferromagnetic ordering of the vanadium spins near 130 K, below an initial orbital ordering near 200 K. The phase coexistence is the result of the intermediate ionic size of samarium coupled to exchange striction at the vanadium spin ordering.  相似文献   

9.
The origin of the light scattering observed at the alpha-beta transition of quartz is still a subject of controversy. We present structural studies performed during the coexistence of the alpha and the intermediate incommensurate (inc) phases using simultaneously synchrotron x-ray diffraction and optical techniques. The small and large angle light scatterings are due, respectively, to the orientation domains of the 3q inc phase and to the alpha phase twins revealed by diffuse x-ray scattering. In the vicinity of the interphase boundary, the two light scattering regions, both with perturbed properties, form a complex multiscale structure.  相似文献   

10.
Despite impressive advances, precise simulation of fluid-fluid and fluid-solid phase transitions still remains a challenging task. The present work focuses on the determination of the phase diagram of a system of particles that interact through a pair potential, ?(r), which is of the form ?(r)?=?4?[(σ/r)(2n)?-?(σ/r)(n)] with n?=?12. The vapor-liquid phase diagram of this model is established from constant-pressure simulations and flat-histogram techniques. The properties of the solid phase are obtained from constant-pressure simulations using constrained cell models. In the constrained cell model, the simulation volume is divided into Wigner-Seitz cells and each particle is confined to moving in a single cell. The constrained cell model is a limiting case of a more general cell model which is constructed by adding a homogeneous external field that controls the relative stability of the fluid and the solid phase. Fluid-solid coexistence at a reduced temperature of 2 is established from constant-pressure simulations of the generalized cell model. The previous fluid-solid coexistence point is used as a reference point in the determination of the fluid-solid phase boundary through a thermodynamic integration type of technique based on histogram reweighting. Since the attractive interaction is of short range, the vapor-liquid transition is metastable against crystallization. In the present work, the phase diagram of the corresponding constrained cell model is also determined. The latter is found to contain a stable vapor-liquid critical point and a triple point.  相似文献   

11.
The effects of Mo on precipitation behaviours in aged cast stainless steels have been investigated. Mo-free CF3 steel and Mo-bearing CF3M steel, both of which consisted of a duplex structure of ferrite and austenite phases, were prepared. Microstructural evolution in the ferrite phase during ageing at 723 K has been observed by transmission electron microscopy (TEM). Precipitates in CF3 steel were identified to belong to the G-phase and possess lattice coherency with the ferrite phase at interphase boundaries. On the other hand, precipitates in CF3M steel were found to be nanodomains of not only to the G-phase but also to another phase enriched in Mo. Some of the nanodomains containing Mo exhibited diffraction patterns having pseudo five-fold symmetry, but others exhibited regular periodicity in high-resolution TEM images. The atomic structure of the Mo-related nanodomains is proposed to be a distorted χ-phase that retains coherency with the matrix.  相似文献   

12.
刘银娟  张佳威  贺端威  许超  胡启威  戚磊  梁阿坤 《中国物理 B》2017,26(11):116202-116202
In the present work, a third form, the so-called HP-BiNbO_4 synthesized at high pressure and high temperature is investigated with the in-situ angle-dispersive x-ray diffraction(ADXRD) measurements under high pressure. We explore the compression behavior and phase stability of HP-BiNbO_4. The structure of HP-BiNbO_4 is first determined. The x-ray diffraction data reveal that the structure HP-BiNbO_4 is stable under pressures up to 24.1 GPa. The ADXRD data yield a bulk modulus K_o = 185(7) GPa with a pressure derivative K_o'= 2.9(0.8). Furthermore, the data are compared with those of other ABO_4 compounds. The results show that the bulk modulus of HP-BiNbO_4(about 185 GPa) is slightly higher than that of tetragonal BiVO_4 and significantly greater than those of the tungstates and molybdates.  相似文献   

13.
Density functional theory and computer simulation are used to investigate sedimentation equilibria of colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas and liquid phases, a stable "floating liquid" phase is found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point. This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.  相似文献   

14.
Lun Xiong 《中国物理 B》2022,31(11):116102-116102
We have studied the high-pressure compression behavior of molybdenum up to 60 GPa by synchrotron radial x-ray diffraction (RXRD) in a diamond anvil cell (DAC). It is found that all diffraction peaks of molybdenum undergo a split at around 27 GPa, and we believe that a phase transition from a body-centered cubic structure to a rhombohedral structure at room pressure has occurred. The slope of pressure-volume curve shows continuity before and after this phase transition, when fitting the pressure-volume curves of the body-centered cubic structure at low pressure and the rhombohedral structure at high pressure. A bulk modulus of 261.3 (2.7) GPa and a first-order derivative of the bulk modulus of 4.15 (0.14) are obtained by using the nonhydrostatic compression data at the angle ψ = 54.7° between the diffracting plane normal and stress axis.  相似文献   

15.
Among the three coexisting types of terraces found on the twofold surface of the d-Al-Cu-Co quasicrystal, nanodomains are essentially observed on the transition-metal rich ones, with a coherent interface boundary. Both clean surface and Ag growth analyses, demonstrate that nanodomain surfaces are structurally identical to one of the two other terraces, which contains 85 at.?% Al. We provide evidence that the nanodomains are a manifestation of phason defects that extend downward toward the bulk, and state that nanodomains develop because the energetic cost of creating the phason is outweighed by the change in surface energy. Consequently, the formation of nanodomains involves more than just the surface layer, but is driven by surface energetics.  相似文献   

16.
We report fluid-fluid and fluid-solid phase transitions of charge-stabilized polystyrene particles suspended in a binary liquid mixture of 3-methylpyridine and water. These thermally reversible phase transitions occur in the homogeneous phase of the binary liquid mixture below the coexistence temperature of the two liquids. Close density matching of the particles and the solvent allows us to follow the phase behavior until complete coexistence of macroscopic phases with temperature as the control parameter. We use small angle x-ray scattering to characterize these phases as colloidal gas, liquid, fcc crystal, and glass.  相似文献   

17.
We report on a new approach to probe bulk dislocations by using coherent x-ray diffraction. Coherent x rays are particularly suited for bulk dislocation studies because lattice phase shifts in condensed matter induce typical diffraction patterns which strongly depend on the fine structure of the dislocation cores. The strength of the method is demonstrated by performing coherent diffraction of a single dislocation loop in silicon. A dissociation of a bulk dislocation is measured and proves to be unusually large compared to surface dislocation dissociations. This work opens a route for the study of dislocation cores in the bulk in a static or dynamical regime, and under various external constraints.  相似文献   

18.
The transformation of a crystalline solid into a liquid, seeming to have no precursor and no intermediate states, has challenged scientists for over a century. The search for the fundamental mechanism stimulated the development of quantum mechanics, concepts of the roles of dimensionality and topological order in condensed matter, and experimental techniques to test the theories. We now understand that the transition begins at lower temperatures than the melting point of the bulk. It starts at the edges of crystal planes, progresses across the surface, evolves into the successive melting of atomic layers, and ends in bulk phase coexistence. The memory of the process remains within a few molecular distances at the crystal-melt interface.  相似文献   

19.
We present X-ray reflectivity investigations of the concentration distribution in binary liquid thin films on silicon substrates. The liquid-vapor coexistence of the binary mixture investigated, hexane and perfluorohexane, is far from criticality. Therefore, a sharp interface separates the liquid film from the vapor. The data reveal a separation of the film in layers parallel to the substrate. A phase diagram is constructed as a projection to the (composition difference, temperature) space, covering a temperature range corresponding to the one-phase and the two-phase regime of the bulk liquid. Although the composition data indicate a mixing gap similar to that of the bulk system, there are two major differences: i) only the near-surface phase changes its composition significantly, and ii) a composition gradient in the film exists also at higher temperatures where in the bulk system the one-phase regime exists.Received: 28 April 2004, Published online: 21 September 2004PACS: 61.10.Kw X-ray reflectometry (surfaces, interfaces, films) - 64.75. + g Solubility, segregation, and mixing; phase separation - 68.15. + e Liquid thin films  相似文献   

20.
The structure of barium strontium titanate (BST) films grown by chemical solution deposition on polycor substrates was studied by transmission electron microscopy, high-resolution microscopy, and x-ray diffraction analysis. It was found that a grain structure inhomogeneous in cross section is formed after two-step crystallization at T = 700 and 950°C. There are equiaxed grains (44.2 nm in average size) in the BST-polycor interfacial region and a multilevel columnar structure (grain height up to 150 nm) with {100} texture in the film bulk. Grain growth inhibition during high-temperature annealing and underlayer formation in the interfacial region are caused by a change in the substrate structure, i.e., grain reorientation and {112} texture formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号