首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The room temperature iron K-edge X-ray absorption near edge structure spectra of (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))I(2) and (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))(BF(4))(2) have been measured between ambient and 88 and 94 kbar, respectively, in an opposed diamond anvil cell. The iron(II) in (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))I(2)undergoes the expected gradual spin-state crossover from the high-spin state to the low-spin state with increasing pressure. In contrast, the iron(II) in (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))(BF(4))(2) remains high-spin between ambient and 78 kbar and is only transformed to the low-spin state at an applied pressure of between 78 and 94 kbar. No visible change is observed in the preedge peak in the spectra of (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))I(2) with increasing pressure, whereas the preedge peak in the spectra of ((e[HC(3,5-(CH(3))(2)pz)(3)](2))(BF(4))(2) changes as expected for a high-spin to low-spin crossover with increasing pressure. The difference in the spin-state crossover behavior of these two complexes is likely related to the unusual behavior of (Fe[HC(3,5-(CH(3))(2)pz)(3)](2))(BF(4))(2) upon cooling.  相似文献   

2.
The reaction of M(BF(4))(2).xH(2)O (M = Co, Ni, and Cu) and HC(3,5-Me(2)pz)(3) in a 1:2 ratio yields [Co[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2) (2), [Ni[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2) (3), and [Cu[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2) (4). Over the temperature range from 5 to 350, 345, or 320 K, Curie law behavior is observed for microcrystalline samples of all three compounds showing them to have three, two, and one unpaired electrons, respectively, with no spin-crossover observed for 2. Crystalline samples of these compounds torque in the applied magnetic field the first time the sample is cooled to 5 K. The solid-state structures of all three are isomorphous at 220 K, monoclinic in the space group C2/c. The metal is located on a unique crystallographic site and has a trigonally distorted octahedral structure, with 4 showing the expected Jahn-Teller distortions. Cooling crystals of all three to low temperatures leads to the observation of the same phase change to triclinic in the new space group P(-)1 with nonmerohedral twinning. This change is reversible and yields two crystallographically unique metal sites at low temperature. The bond angles and distances for the two different metal sites for each compound in the low temperature structures are very similar to each other and to those in the 220 K structures. The same phase change, monoclinic to triclinic, has been observed previously for [Fe[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2) (1), except in this case, the phase change results in half of the cations changing over from the high-spin state to the low-spin state while the other half of the cations remain high-spin, with the low-spin form decreasing its Fe-N bond distances by 0.19 A. The new results with 2-4 show that it is the phase transition, which occurs in complexes of the type [M[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2) with first row transition metals, that is driving the unusual spin-crossover behavior of [Fe[HC(3,5-Me(2)pz)(3)](2)](BF(4))(2).  相似文献   

3.
Two new dinucleating ligands 1,2,4,5-tetrakis(2-pyridinecarboxamido)benzene, H(4)(tpb), and 1,2,4,5-tetrakis(4-tert-butyl-2-pyridinecarboxamido)benzene, H(4)(tbpb), have been synthesized, and the following dinuclear cyano complexes of cobalt(III) and iron(III) have been isolated: Na(2)[Co(III)(2)(tpb)(CN)(4)] (1); [N(n-Bu)(4)](2)[Co(III)(2)(tbpb)(CN)(4)] (2); [Co(III)(2)(tbpb(ox2))(CN)(4)] (3); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(N(3))(4)] (4); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(CN)(4)] (5); [N(n-Bu)(4)](2)[Fe(III)(2)(tbpb)(CN)(4)] (6). Complexes 2-4 and 6 have been structurally characterized by X-ray crystallography at 100 K. From electrochemical and spectroscopic (UV-vis, IR, EPR, M?ssbauer) and magnetochemical investigations it is established that the coordinated central 1,2,4,5-tetraamidobenzene entity in the cyano complexes can be oxidized in two successive one-electron steps yielding paramagnetic (tbpb(ox1))(3)(-) and diamagnetic (tbpb(ox2))(2)(-) anions. Thus, complex 6 exists in five characterized oxidation levels: [Fe(III)(2)(tbpb(ox2))(CN)(4)](0) (S = 0); [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Fe(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Fe(III)Fe(II)(tbpb)(CN)(4)](3)(-) (S = (1)/(2)); [Fe(II)(2)(tbpb)(CN)(4)](4)(-) (S = 0). The iron(II) and (III) ions are always low-spin configurated. The electronic structure of the paramagnetic iron(III) ions and the exchange interaction of the three-spin system [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) are characterized in detail. Similarly, for 2 three oxidation levels have been identified and fully characterized: [Co(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Co(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Co(III)(2)(tbpb(ox2))(CN)(4)](0). The crystal structures of 2 and 3 clearly show that the two electron oxidation of 2 yielding 3 affects only the central tetraamidobenzene part of the ligand.  相似文献   

4.
Substitutional solid solutions of metal hexacyanometalates in which low-spin iron(III) and cobalt(III) ions populate the carbon-coordinated sites were synthesized and studied by powder diffraction including Rietveld refinement, cyclic voltammetry of immobilized microparticles, diffuse reflection vis-spectrometry, and magnetization techniques. The continuous solid solution series of potassium copper(II), potassium nickel(II), and iron(III) [(hexacyanoferrate(III))(1-x)(hexacyanocobaltate(III))(x)] show that the substitution of low-spin iron(III) by cobalt(III) in the hexacyanometalate units more strongly affects the formal potentials of the nitrogen-coordinated copper(II) and high-spin iron(III) ions than those of the remaining low-spin iron(III) ions. In the case of copper(II) and iron(III) [(hexacyanoferrate(III))(1-x)(hexacyanocobaltate(III))(x)] the peak currents decrease much more than can be explained by stoichiometry, indicating that the charge propagation is slowed by the substitution of low-spin iron(III) by cobalt(III). The Rietveld refinement of all compounds confirmed the structure initially proposed by Keggin for Prussian blue and contradicts the structure described later by Ludi. The dependencies of lattice parameters on composition exhibit in all series of solid solutions studied similar, although small, deviations from ideality, which correlate with the electrochemical behavior. Finally, a series of solid solutions of the composition KNi(0.5)(II)Cu(0.5)(II)[Fe(III)(CN)(6)](1-x)[Co(III)(CN)(6)](x), where both the nitrogen- and carbon-coordinated metal ions are mixed populated and were synthesized and characterized. These are the first examples of solid solutions of metal hexacyanometalates with four different metal ions, where both the nitrogen- and the carbon-coordinated sites possess a mixed population.  相似文献   

5.
Magnetically bistable solid solutions of Prussian blue analogues with chemical formulas of K(α)Ni(1-x)Co(x)[Fe(CN)(6)](β)·nH(2)O (Ni(1-x)Co(x)Fe) and K(α)Co(γ)[Fe(CN)(6)](y)[Cr(CN)(6)](1-y)·nH(2)O (CoFe(y)Cr(1-y)) have been synthesized and studied using mass spectrometry, M?ssbauer spectroscopy, X-ray diffraction, temperature-dependent infrared spectroscopy, and dc magnetometry. These compounds provide insight into interfaces between the photomagnetic Co-Fe Prussian blue analogue and the high-T(C) Ni-Cr Prussian blue analogue that exist in high-T(C) photomagnetic heterostructures. This investigation shows that the bistability of Co-Fe is strongly modified by metal substitution, with Ni(1-x)Co(x)Fe stabilizing high-spin cobalt-iron pairs and CoFe(y)Cr(1-y) stabilizing low-spin cobalt-iron pairs, while both types of substitution cause a dramatic decrease in the bistability of the material.  相似文献   

6.
A series of complexes [M(bbtr)3]A2 (M=FeII, ZnII; bbtr=1,4‐bis(1,2,3‐triazol‐1‐yl)butane; A=ClO4?, BF4?) and [FexZn1?x(bbtr)3](ClO4)2 (0<x<1) dilute systems was synthesized and characterized. Earlier studies on [Fe(bbtr)3](ClO4)2 ( 1?ClO4 ), which crystallizes in space group P$\bar 3A series of complexes [M(bbtr)(3)]A(2) (M=Fe(II), Zn(II); bbtr=1,4-bis(1,2,3-triazol-1-yl)butane; A=ClO(4)(-), BF(4)(-)) and [Fe(x)Zn(1-x)(bbtr)(3)](ClO(4))(2) (0相似文献   

7.
Whereas the neat polymeric iron(II) compound [Fe(bbtr)(3)](ClO(4))(2), bbtr = 1,4-di(1,2,3-triazol-1-yl)butane, shows a quantitative spin transition triggered by a crystallographic phase transition centered at 107 K with a 13 K wide hysteresis, the iron(II) complexes in the diluted mixed crystals [Fe(x)Zn(1-x)(bbtr)(3)](ClO(4))(2), x = 0.02 and 0.1, stay predominantly in the (5)T(2) high-spin state down to cryogenic temperatures. However, the (1)A(1) low-spin state can be populated as metastable state via irradiation into the spin-allowed (5)T(2)→(5)E ligand-field transition of the high-spin species in the near-infrared. The quantum efficiency of the light-induced conversion is approximately 10% at low temperatures and decreases rapidly above 160 K. The lifetime of the light-induced low-spin state decreases from 15 days at 40 K to 30 ns at 220 K, that is, by 14 orders of magnitude. In the high-temperature regime the activation energy for the low-spin→high-spin relaxation is 1840(20) cm(-1).  相似文献   

8.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

9.
The generation of metal cyanide ions in the gas phase by laser ablation of M(CN)(2) (M = Co, Ni, Zn, Cd, Hg), Fe(III)[Fe(III)(CN)(6)] x xH(2)O, Ag(3)[M(CN)(6)] (M = Fe, Co), and Ag(2)[Fe(CN)(5)(NO)] has been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Irradiation of Zn(CN)(2) and Cd(CN)(2) produced extensive series of anions, [Zn(n)(CN)(2n+1)](-) (1 < or = n < or = 27) and [Cd(n)(CN)(2n+1)](-) (n = 1, 2, 8-27, and possibly 29, 30). Cations Hg(CN)(+) and [Hg(2)(CN)(x)](+) (x = 1-3), and anions [Hg(CN)(x)](-) (x = 2, 3), are produced from Hg(CN)(2). Irradiation of Fe(III)[Fe(III)(CN)(6)] x xH(2)O gives the anions [Fe(CN)(2)](-), [Fe(CN)(3)](-), [Fe(2)(CN)(3)](-), [Fe(2)(CN)(4)](-), and [Fe(2)(CN)(5)](-). When Ag(3)[Fe(CN)(6)] is ablated, [AgFe(CN)(4)](-) and [Ag(2)Fe(CN)(5)](-) are observed together with homoleptic anions of Fe and Ag. The additional heterometallic complexes [AgFe(2)(CN)(6)](-), [AgFe(3)(CN)(8)](-), [Ag(2)Fe(2)(CN)(7)](-), and [Ag(3)Fe(CN)(6)](-) are observed on ablation of Ag(2)[Fe(CN)(5)(NO)]. Homoleptic anions [Co(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n+2)](-) (n = 1-3), [Co(2)(CN)(4)](-), and [Co(3)(CN)(5)](-) are formed when anhydrous Co(CN)(2) is the target. Ablation of Ag(3)[Co(CN)(6)] yields cations [Ag(n)(CN)(n-1)](+) (n = 1-4) and [Ag(n)Co(CN)(n)](+) (n = 1, 2) and anions [Ag(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n-1)](-) (n = 1, 2), [Ag(n)Co(CN)(n+2)](-) (n = 1, 2), and [Ag(n)Co(CN)(n+3)](-) (n = 0-2). The Ni(I) species [Ni(n)(CN)(n-1)](+) (n = 1-4) and [Ni(n)(CN)(n+1)](-) (n = 1-3) are produced when anhydrous Ni(CN)(2) is irradiated. In all cases, CN(-) and polyatomic carbon nitride ions C(x)N(y)(-) are formed concurrently. On the basis of density functional calculations, probable structures are proposed for most of the newly observed species. General structural features are low coordination numbers, regular trigonal coordination stereochemistry for d(10) metals but distorted trigonal stereochemistry for transition metals, the occurrence of M-CN-M and M(-CN-)(2)M bridges, addition of AgCN to terminal CN ligands, and the occurrence of high spin ground states for linear [M(n)(CN)(n+1)](-) complexes of Co and Ni.  相似文献   

10.
The new, monometal substituted silicotungstates [Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (1), [Co(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (2) and [Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (3) have been synthesized and isolated as the potassium salts K(10)[Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-1), K(10)[Co(H(2)O0(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-2) and K(10)[Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 13.5 H(2)O (K-3), which have been characterized by IR spectroscopy, single crystal X-ray diffraction, elemental analysis and cyclic voltammetry. Polyanions 1-3 are composed of two (gamma-SiW(10)O(36)) units fused on one side via two W-O-W' bridges and on the other side by an octahedrally coordinated trans-MO(4)(OH(2))(2) transition metal fragment, resulting in a structure with C(2v) point group symmetry. Anions 1-3 were synthesized by reaction of the dilacunary precursor [gamma-SiW(10)O(36)](8-) with Mn(2+), Co(2+) and Ni(2+) ions, respectively, in 1 M KCl solution at pH 4.5. The electrochemical properties of 1-3 were studied by cyclic voltammetry and controlled potential coulometry in a pH 5 buffer medium. The waves associated with the W-centers are compared with each other and with those of the parent lacunary precursor [gamma-SiW(10)O(36)](8-) in the same medium. They appear to be dominated by the acid-base properties of the intermediate reduced species. A facile merging of the waves for 3 is observed while those for 1 and 2 remain split. Controlled potential coulometry of the single wave of 3 or the combined waves of 1 and 2 is accompanied by catalysis of the hydrogen evolution reaction. No redox activity was detected for the Ni(2+) center in 3, whereas the Co(2+) center in 2 shows a one-electron redox process. The two-electron, chemically reversible process of the Mn(2+) center in 1 is accompanied by a film deposition on the electrode surface.  相似文献   

11.
The valence states of the nucleogenic (57)Fe arising from the nuclear disintegration of radioactive (57)Co by electron capture decay, (57)Co(EC)(57)Fe, have been studied by M?ssbauer emission spectroscopy (MES) in the (57)Co-labeled systems: [(57)Co/Co(terpy)(2)]Cl(2).5H(2)O (1), [(57)Co/Co(terpy)(2)](ClO(4))(2).(1)/(2)H(2)O (2), and [(57)Co/Mn(terpy)(2)](ClO(4))(2). (1)/(2)H(2)O (3) (terpy = 2,2':6',2' '-terpyridine). The compounds 1, 2, and 3 were labeled with ca. 1 mCi of (57)Co and were used as the M?ssbauer sources at variable temperatures between 300 K and ca. 4 K. [Fe(terpy)(2)]X(2) is a diamagnetic low-spin (LS) complex, independent of the nature of the anion X, while [Co(terpy)(2)]X(2) complexes show gradual spin transition as the temperature is varied. The Co(II) ion in 1 "feels" a somewhat stronger ligand field than that in 2; as a result, 83% of 1 stays in the LS state at 321 K, while in 2 the high-spin (HS) state dominates at 320 K and converts gradually to the LS state with a transition temperature of T(1/2) approximately 180 K. Variable-temperature M?ssbauer emission spectra for 1, 2, and 3 showed only LS-(57)Fe(II) species at 295 K. On lowering the temperature, metastable HS Fe(II) species generated by the (57)Co(EC)(57)Fe process start to grow at ca. 100 K in 1, at ca. 200 K in 2, and at ca. 250 K in 3, reaching maximum values of 0.3 at 20 K in 1, 0.8 at 50 K in 2, and 0.86 at 100 K in 3, respectively. The lifetime of the metastable HS states correlates with the local ligand field strength, and this is in line with the "inverse energy gap law" already successfully applied in LIESST relaxation studies.  相似文献   

12.
The synthesis and characterisation of a pyridazine-containing two-armed grid ligand L2 (prepared from one equivalent of 3,6-diformylpyridazine and two equivalents of p-anisidine) and the resulting transition metal (Zn, Cu, Ni, Co, Fe, Mn) complexes (1-9) are reported. Single-crystal X-ray structure determinations revealed that the copper(I) complex had self-assembled as a [2 x 2] grid, [Cu(I) (4)(L2)(4)][PF(6)](4).(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25) (2.(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25)), whereas the [Zn(2)(L2)(2)(CH(3)CN)(2)(H(2)O)(2)][ClO(4)](4).CH(3)CN (1.CH(3)CN), [Ni(II) (2)(L2)(2)(CH(3)CN)(4)][BF(4)](4).(CH(3)CH(2)OCH(2)CH(3))(0.25) (5 a.(CH(3)CH(2)OCH(2)CH(3))(0.25)) and [Co(II) (2)(L2)(2)(H(2)O)(2)(CH(3)CN)(2)][ClO(4)](4).(H(2)O)(CH(3)CN)(0.5) (6 a.(H(2)O)(CH(3)CN)(0.5)) complexes adopt a side-by-side architecture; iron(II) forms a monometallic cation binding three L2 ligands, [Fe(II)(L2)(3)][Fe(III)Cl(3)OCl(3)Fe(III)].CH(3)CN (7.CH(3)CN). A more soluble salt of the cation of 7, the diamagnetic complex [Fe(II)(L2)(3)][BF(4)](2).2 H(2)O (8), was prepared, as well as two derivatives of 2, [Cu(I) (2)(L2)(2)(NCS)(2)].H(2)O (3) and [Cu(I) (2)(L2)(NCS)(2)] (4). The manganese complex, [Mn(II) (2)(L2)(2)Cl(4)].3 H(2)O (9), was not structurally characterised, but is proposed to adopt a side-by-side architecture. Variable temperature magnetic susceptibility studies yielded small negative J values for the side-by-side complexes: J=-21.6 cm(-1) and g=2.17 for S=1 dinickel(II) complex [Ni(II) (2)(L2)(2)(H(2)O)(4)][BF(4)](4) (5 b) (fraction monomer 0.02); J=-7.6 cm(-1) and g=2.44 for S= 3/2 dicobalt(II) complex [Co(II) (2)(L2)(2)(H(2)O)(4)][ClO(4)](4) (6 b) (fraction monomer 0.02); J=-3.2 cm(-1) and g=1.95 for S= 5/2 dimanganese(II) complex 9 (fraction monomer 0.02). The double salt, mixed valent iron complex 7.H(2)O gave J=-75 cm(-1) and g=1.81 for the S= 5/2 diiron(III) anion (fraction monomer=0.025). These parameters are lower than normal for Fe(III)OFe(III) species because of fitting of superimposed monomer and dimer susceptibilities arising from trace impurities. The iron(II) centre in 7.H(2)O is low spin and hence diamagnetic, a fact confirmed by the preparation and characterisation of the simple diamagnetic iron(II) complex 8. M?ssbauer measurements at 77 K confirmed that there are two iron sites in 7.H(2)O, a low-spin iron(II) site and a high-spin diiron(III) site. A full electrochemical investigation was undertaken for complexes 1, 2, 5 b, 6 b and 8 and this showed that multiple redox processes are a feature of all of them.  相似文献   

13.
The [Fe(II)(H(3)L)](BF(4))(2).3H(2)O (1) complex was synthesized, where H(3)L (tris[[2-[(imidazole-4-yl)methylidene]amino]ethyl]amine) is a tripodal ligand obtained by condensation of tris(2-aminoethyl)amine and 4-formylimidazole (fim) in a 1:3 molar ratio. Starting from 1, a series of complexes, [Fe(II)(H(1.5)L)](BF(4))(0.5) (2) (=[Fe(II)(H(3)L)][Fe(II)(L)]BF(4)), [Fe(H(1.5)L)]BF(4) (3) (=[Fe(II)(H(3)L)][Fe(III)(L)](BF(4))(2)), [Fe(III)(H(3)L)](BF(4))(3).fim.H(2)O (4), and [Fe(III)(L)].2.5H(2)O (5), has been synthesized and characterized. The single-crystal X-ray structure of each complex has been determined. The Fe(II) compound, 2, and a mixed valence Fe(II)-Fe(III) compound, 3, involve formally hemi-deprotonated ligands, H(1.5)L. The structure of 3 consists of a homochiral two-dimensional assembled sheet, arising from the intermolecular hydrogen bonds between [Fe(II)(H(3)L)](2+) and [Fe(III)(L)](0) (3). All but 5 exhibit spin crossover between low-spin (LS) and high-spin (HS) states. This is a rare case where both Fe(II) and Fe(III) complexes containing the same ligand exhibit spin-crossover behavior. Magnetic susceptibility and M?ssbauer studies showed that 3 has three accessible electronic states: LS Fe(II)-LS Fe(III), HS Fe(II)-LS Fe(III), and HS Fe(II)-HS Fe(III). Compounds 1-3 show the light-induced excited spin-state trapping effect at the Fe(II) sites upon irradiation with green light. The solution magnetic properties, electronic spectra, and electrochemical properties of 1, 4, and 5 were also studied.  相似文献   

14.
A reinvestigation of the redox behavior of the [Fe(3)(&mgr;(3)-S)(CO)(9)](2)(-) dianion led to the isolation and characterization of the new [Fe(5)S(2)(CO)(14)](2)(-), as well as the known [Fe(6)S(6)(CO)(12)](2)(-) dianion. As a corollary, new syntheses of the [Fe(3)S(CO)(9)](2)(-) dianion are also reported. The [Fe(5)S(2)(CO)(14)](2)(-) dianion has been obtained by oxidative condensation of [Fe(3)S(CO)(9)](2)(-) induced by tropylium and Ag(I) salts or SCl(2), or more straightforwardly through the reaction of [Fe(4)(CO)(13)](2)(-) with SCl(2). The [Fe(6)S(6)(CO)(12)](2)(-) dianion has been isolated as a byproduct of the synthesis of [Fe(3)S(CO)(9)](2)(-) and [Fe(5)S(2)(CO)(14)](2)(-) or by reaction of [Fe(4)(CO)(13)](2)(-) with elemental sulfur. The structures of [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)] and [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)] were determined by single-crystal X-ray diffraction analyses. Crystal data: for [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)], monoclinic, space group P2(1)/c (No. 14), a = 24.060(5), b = 14.355(6), c = 23.898(13) ?, beta = 90.42(3) degrees, Z = 4; for [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)], monoclinic, space group C2/c (No. 15), a = 34.424(4), b = 14.081(2), c = 19.674(2) ?, beta = 115.72(1) degrees, Z = 4. The new [Fe(5)S(2)(CO)(14)](2)(-) dianion shows a "bow tie" arrangement of the five metal atoms. The two Fe(3) triangles sharing the central Fe atom are not coplanar and show a dihedral angle of 55.08(3) degrees. Each Fe(3) moiety is capped by a triply bridging sulfide ligand. The 14 carbonyl groups are all terminal; two are bonded to the unique central atom and three to each peripheral iron atom. Protonation of the [Fe(5)S(2)(CO)(14)](2)(-) dianion gives reversibly rise to the corresponding [HFe(5)S(2)(CO)(14)](-) monohydride derivative, which shows an (1)H-NMR signal at delta -21.7 ppm. Its further protonation results in decomposition to mixtures of Fe(2)S(2)(CO)(6) and Fe(3)S(2)(CO)(9), rather than formation of the expected H(2)Fe(5)S(2)(CO)(14) dihydride. Exhaustive reduction of [Fe(5)S(2)(CO)(14)](2)(-) with sodium diphenyl ketyl progressively leads to fragmentation into [Fe(3)S(CO)(9)](2)(-) and [Fe(CO)(4)](2)(-), whereas electrochemical, as well as chemical oxidation with silver or tropylium tetrafluoroborate, in dichloromethane, generates the corresponding [Fe(5)S(2)(CO)(14)](-) radical anion which exhibits an ESR signal at g = 2.067 at 200 K. The electrochemical studies also indicated the existence of a subsequent one-electron anodic oxidation which possesses features of chemical reversibility in dichloromethane but not in acetonitrile solution. A reexamination of the electrochemical behavior of the [Fe(3)S(CO)(9)](2)(-) dianion coupled with ESR monitoring enabled the spectroscopic characterization of the [Fe(3)S(CO)(9)](-) radical monoanion and demonstrated its direct involvement in the generation of the [Fe(5)S(2)(CO)(14)](n)()(-) (n = 0, 1, 2) system.  相似文献   

15.
High-level ab initio calculations using the CASPT2 method and extensive basis sets were performed on the energy differences of the high-[(5)T(2g):t(2g) (4)e(g) (2)] and low-[(1)A(1g):t(2g) (6)] spin states of the pseudo-octahedral Fe(II) complexes [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), and [Fe(bpy)(3)](2+). The results are compared to the results obtained from density functional theory calculations with the generalized gradient approximation functional BP86 and two hybrid functionals B3LYP and PBE0, and serve as a calibration for the latter methods. We find that large basis set CASPT2 calculations may provide results for the high-spin/low-spin splitting DeltaE(HL) that are accurate to within 1000 cm(-1), provided they are based on an adequately large CAS[10,12] reference wave function. The latter condition was found to be much more stringent for [Fe(bpy)(3)](2+) than for the other two complexes. Our "best" results for DeltaE(HL) (including a zero-point energy correction) are -17 690 cm(-1) for [Fe(H(2)O)(6)](2+), -8389 cm(-1) for [Fe(NH(3))(6)](2+), and 3820 cm(-1) for [Fe(bpy)(3)](2+).  相似文献   

16.
Dissolution of a tetrafluoroborate or perchlorate salt of [M(OH(2))(6)](2+) (M = Co, Ni, Cu) in 1-ethyl-3-methylimidazolium tetraluforoborate ionic liquid ([emim]BF(4)) results in significant solvatochromism and increasing intensity of color. These observations arise from partial dehydration from the octahedral [M(OH(2))(6)](2+) and formation of the tetrahedral [M(OH(2))(4)](2+). This reaction was monitored by the intense absorption band due to the d-d transition in the UV-vis absorption spectrum. The EXAFS investigation clarified the coordination structures around M(2+) {[Co(OH(2))(4)](2+), R(Co-O) = 2.17 ?, N = 4.2; [Cu(OH(2))(4)](2+), R(Cu-O) = 2.09 ?, N = 3.8}. (1)H and (19)F NMR study suggested that both [emim](+) and BF(4)(-) are randomly arranged in the second-coordination sphere of [M(OH(2))(4)](2+).  相似文献   

17.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

18.
Low-temperature oxidation of Fe(2)(S(2)C(n)H(2n)(CNMe)(6-x)(CO)x (n = 2, 3; x = 2, 3) affords a family of mixed carbonyl-isocyanides of the type [Fe(2)(S(2)C(n)H(2n)(CO)x(CNMe)(7-x)](2+). The degree of substitution is controlled by the RNC/Fe ratio, as well as the degree of initial substitution at iron, with tricarbonyl derivatives favoring more highly carbonylated products. The structures of the monocarbonyl derivatives [Fe(2)(S(2)C(n)H(2n))(mu-CO)(CNMe)(6)](PF(6))(2) (n = 2,3) established crystallographically and spectroscopically, are quite similar, with Fe---Fe distances of ca. 2.5 A, although the mu-CO is unsymmetrical in the propanedithiolate derivative. Isomeric forms of [Fe(2)(S(2)C(3)H(6))(CO)(CNMe)(6)](PF(6))(2) were characterized where the CO is bridging or terminal, the greatest structural difference being the 0.1 A elongation of the Fe---Fe distance when MeNC (vs CO) is bridging. In the dicarbonyl species, [Fe(2)(S(2)C(2)H(4))(mu-CO)(CO)(CNMe)(5)](PF(6))(2), the terminal CO ligand is situated at one of the basal sites, not trans to the Fe---Fe vector. Oxidation of Fe(2)(S(2)C(2)H(4))(CNMe)(3)(CO)(3) under 1 atm CO gives the deep pink tricarbonyl [Fe(2)(S(2)C(2)H(4))(CO)(3)(CNMe)(4)](PF(6))(2). DFT calculations show that a bridging CO or MeNC establishes a 3-center, 2-electron bond within the two Fe(II) centers, which would otherwise be nonbonding.  相似文献   

19.
The hydrothermal reactions of a Cu(II) starting material, a molybdate source, 2,2'-bipyridine or terpyridine, and the appropriate alkyldiphosphonate ligand yield two series of bimetallic organophosphonate hybrid materials of the general types [Cu(n)(bpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)] and [Cu(n)(terpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)]. The bipyridyl series includes the one-dimensional materials [Cu(bpy)(MoO(2))(H(2)O)(O(3)PCH(2)PO(3))] (1) and [[Cu(bpy)(2)][Cu(bpy)(H(2)O)](Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)CH(2)PO(3))].H(2)O (5.H(2)O) and the two-dimensional hybrids [Cu(bpy)(Mo(2)O(5))(H(2)O)(O(3)PCH(2)PO(3))].H(2)O (2.H(2)O), [[Cu(bpy)](2)(Mo(4)O(12))(H(2)O)(2)(O(3)PCH(2)CH(2)PO(3))].2H(2)O (3.2H(2)O), and [Cu(bpy)(Mo(2)O(5))(O(3)PCH(2)CH(2)CH(2)PO(3))](4). The terpyridyl series is represented by the one-dimensional [[Cu(terpy)(H(2)O)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)PO(3))].3H(2)O (7.3H(2)O) and the two-dimensional composite materials [Cu(terpy)(Mo(2)O(5))(O(3)PCH(2)PO(3))] (6) and [[Cu(terpy)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)PO(3))] (8). The structures exhibit a variety of molybdate building blocks including isolated [MoO(6)] octahedra in 1, binuclear subunits in 2, 4, and 6, tetranuclear embedded clusters in 3, and the prototypical [Mo(5)O(15)(O(3)PR)(2)](4-) cluster type in 5, 7, and 8. These latter materials exemplify the building block approach to the preparation of extended structures.  相似文献   

20.
The treatment of the dimeric paddle-wheel (PW) compound [Mo(2)(NCCH(3))(10)][BF(4)](4)1 with oxalic acid (0.5 equiv.), 1,1-cyclobutanedicarboxylic acid (1 equiv.), 5-hydroxyisophthalic acid (1 equiv.) (m-bdc-OH) or 2,3,5,6-tetrafluoroterephthalic acid (0.5 or 1 equiv.) leads to the formation of macromolecular dicarboxylate-linked (Mo(2))(n) entities (n = 2, 3, 4). The structure of the compounds depends on the length and geometry of the organic linkers. In the case of oxalic acid, the dimeric compound [(CH(3)CN)(8)Mo(2)(OOC-COO)Mo(2)(NCCH(3))(8)][BF(4)](6)2 is formed selectively, whereas the use of 2,3,5,6-tetrafluoroterephthalic acid affords the square-shaped complex [(CH(3)CN)(6)Mo(2)(OOC-C(6)F(4)-COO)](4)[BF(4)](8)3. Bent linkers with a bridging angle of 109° and 120°, respectively, lead to the formation of the molecular loop [(CH(3)CN)(6)Mo(2)(OOC-C(4)H(6)-COO)](2)[BF(4)](4)4 and the bowl-shaped molecular triangle [(CH(3)CN)(6)Mo(2)(m-bdc-OH)](3)[BF(4)](6)5. All complexes are characterised by X-ray single crystal diffraction, NMR ((1)H, (11)B, (13)C and (19)F) and UV-Vis spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号