首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Residual ligands from colloidal synthesis of nanoparticles influence adsorption of nanoparticles to supports and may complicate fabrication of nanoparticle-decorated microparticles. In this work, we studied the adsorption of completely ligand-free metal nanoparticles and controlled ligand-functionalized nanoparticles to chemically inert microparticle supports. Adsorption of ligand-free silver nanoparticles to barium sulfate microparticle supports is a quantitative, nonreversible process following Freundlich adsorption isotherm. However, adsorption efficiency is very sensitive to ligand concentration applied during laser-based synthesis of silver nanoparticles: exceeding a specific threshold concentration of 50 μmol/L citrate equal to a nanoparticle ligand surface coverage of about 50%, results in an almost complete prevention of nanoparticle adsorption because of electrosteric repulsion by ligand shell. Laser-based synthesis of nanoparticle-decorated microparticles is demonstrated with a variety of metal nanoparticles (Ag, Au, Pt, Fe) and supporting microparticles (calcium phosphate, titanium dioxide, barium sulfate) with application potential in heterogeneous catalysis or biomedicine where ligand control offers extra value, like enhanced catalytic activity or biocompatibility.  相似文献   

2.
基于SN2取代反应制备了羧甲基-β-环糊精(CM-β-CD),采用层层组装法将其成功修饰在Fe3O4磁性纳米粒子表面(MNPs),得到了CM-β-CD功能化的磁性纳米复合物(CM-β-CD-MNPs),通过透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)及振动样品磁强计(VSM)等技术手段进行了表征,考察了其对染料罗丹明B(RhB)的吸附性能。 结果表明,CM-β-CD-MNPs呈球形,分散均匀,平均粒径为16 nm,饱和磁化率为54 emu/g,呈超顺磁性。 吸附动力学符合准二级动力学模型,且吸附1 h达到平衡。 吸附等温线符合Langmuir等温吸附模型,最大吸附量为135.1 mg/g。  相似文献   

3.
作为一种传统的半导体,氧化锌在压电陶瓷、光电化学、光催化、发光器件以及气体传感器等方面具有广阔的应用前景,特别是氧化锌纳米粒子,由于其比表面积大、表面活性较高和对周围环境的敏感性,使其成为传感器研究领域中最有前途的材料,有关生物氧传感器和激光器的光电功能特性以及其能带结构的研究已有报道,  相似文献   

4.
利用吸附相反应技术在SiO2表面制备Ag粒子, 研究了温度变化对载体表面NaOH的吸附、生成Ag的反应过程以及产物Ag粒子形貌的影响. NaOH的吸附率测定结果表明, 吸附平衡时间随着温度升高而增加. 温度升高加快了NaOH与Si—O—Si的反应, 使得NaOH的平衡吸附率不随吸附层的破坏而减少. 采用实时在线UV-Vis光谱研究了Ag粒子的生成过程, 发现温度超过40 ℃时, 反应体系中Ag出现的时间、Ag粒子的浓度和粒径分布范围都发生较大变化. 样品的TEM和XRD分析也表明, 当体系温度超过40 ℃时SiO2表面Ag粒子出现了团聚, 其晶粒粒径也出现了突变. 温度升高导致表面吸附层破坏, 使得Ag的生成场所从吸附层转移到SiO2表面, 最终导致Ag的反应机理和粒子形貌的变化.  相似文献   

5.
Knowing the adsorption behavior of target proteins on biofunctional magnetic nanoparticles is of great importance for the separation and purification of proteins. Adsorption behaviors of avidin on biofunctional magnetic nanoparticles binding to iminobiotin were investigated under different conditions of temperature, pH, ionic strength, and feed avidin concentration. Biofunctionalization of the non-functional nanoparticles was performed, coupled with iminobiotin. Characterization of the particles was carried out using transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The results showed the avidin adsorption behaviors were mainly dependent on affinity interaction between avidin and iminobiotin coupled with the nanoparticles, which exhibited temperature, pH, ionic strength, and feed avidin concentration sensitivity. Maximum avidin adsorption capacity was achieved as 225 mg avidin/g biofunctional nanoparticles. Results were well fitted to the Langmuir isotherm model with the feed avidin concentration of less than 45 μg/ml. Based on the experiments above, the biofunctional magnetic nanoparticles were used to separate avidin from treated egg-white solution containing large amounts of other proteins. The avidin was isolated in 92% yield with an optical purity of more than 98.5% according to the HPSEC data. The regeneration of these nanoparticles was also studied and almost 87.3% of avidin could still be recovered by these regenerated nanoparticles.  相似文献   

6.
Coverage-dependent adsorption of atomic sulfur on Fe(110): a DFT study   总被引:1,自引:0,他引:1  
Adsorption of atomic sulfur at different coverages on the Fe(110) surface is examined using density functional theory (DFT) in order to investigate the effect that adsorbate-adsorbate interactions may have on the surface properties. S is adsorbed in the high-symmetry adsorption sites: 4-fold hollow, bridge, and atop sites in the following surface arrangements: c(2 x 2) and p(1 x 1) which correspond to coverages of 1/2 and 1 monolayer, respectively. The binding energy, work function change, adsorption geometry, charge density distribution, magnetic properties, and density of states are examined and compared to our previous study of S adsorbed at 1/4 monolayer coverage and p(2 x 2) arrangement [Spencer et al. Surf. Sci. 2003, 540, 420]. It was found that S forms polar covalent bonds to the surface. The bonding goes from being S-Fe dominated at the low coverages to being S-S dominated at the higher coverages where the S atoms are located closer together on the surface and interact with each other.  相似文献   

7.
It has for the first time been shown that the action of carbon dioxide on solutions of alkaline-earth metal polysulfides causes a reaction yielding nanoparticles of sulfur and calcium, barium, and strontium carbonates. It has been found that, initially, particles of sulfur and a corresponding carbonate are synthesized with average sizes of about 20–25 nm; then, the particles are enlarged (aggregated) with the precipitation of a composite, which consists of hydrophobic particles of sulfur and the carbonate (the latter become hydrophobic due to the adsorption of neonol present in the reaction mixture). It has been shown that only sulfur exhibits antifungal activity in the composites, while carbonates have no effect on pathogenic fungi. The composite consisting of sulfur and calcium carbonate nanoparticles has shown the highest biological activity during germination of wheat seeds.  相似文献   

8.
In this work, we investigated the adsorption characteristics of anionic polyelectrolytes, which are used in shallow trench isolation chemical mechanical polishing with ceria abrasives. Specifically, the adsorption isotherms and chain conformation of anionic polyelectrolytes were studied in order to elucidate the difference in removal rates of silicon dioxide (SiO2) and silicon nitride (Si3N4) layers and the high selectivity characteristics of ceria slurry. Adsorption isotherms, FT-IR spectroscopy and contact angle measurements revealed that the anionic polyelectrolyte additives had much better adsorption affinities for the Si3N4 surface than for the SiO2 surface. Moreover, blanket wafer polishing results were successfully correlated with the adsorption isotherms of polyelectrolytes on the oxide particle suspensions.  相似文献   

9.
We report a simple and easy method to fabricate magnetic carbon nanotubes (CNTs) by Fenton's reagent method without the addition of any cations. H(2)O(2) was added slowly into the FeSO(4) solution mixed with purified CNTs, and the resulting reactants were placed into a quartz tube to undergo heat treatment under a nitrogen/hydrogen flow. Iron oxide (Fe(2)O(3)) nanoparticles were uniformly dispersed on CNTs without any pretreatment such as strong acid or covalent functionalization processes. The as-produced magnetic CNTs were used as an adsorbent for removal of methyl orange (MO) dye from aqueous solutions. Adsorption experiments indicated that the magnetic CNTs have good adsorption capacity (q(e)) of MO (28 mg/g). The Freundlich isotherm model fitted the experiment data better than the Langmuir isotherm mode. The mean energy of adsorption was calculated as 3.72 kJ/mol based on the Dubinin-Radushkevich model, which suggests that the removal process was dominated by physical adsorption. Kinetic regression results showed that the adsorption kinetics was more accurately represented by a pseudo second-order model. Intra-particle diffusion was involved in the adsorption process, but it was not the only rate-controlling step. More importantly, a new photocatalytic regeneration technology can be enabled by the high nanoscale iron oxide loading (50%). The magnetic CNT adsorbents could be effectively and quickly separated by applying an external magnetic field and regenerated by UV photocatalysis. Therefore, CNTs/λ-Fe(2)O(3) hybrid is a promising magnetic nanomaterial for preconcentration and separation of organic pollutants for environmental remediation.  相似文献   

10.
运用电化学循环伏安法(CV)和原位傅里叶变换红外反射光谱(in situ FTIRS)研究了酸性介质中铂纳米粒子电极(nm-Pt/GC)上NO吸附及其电催化还原过程.结果表明,NO分子的吸附是电催化还原的重要步骤.在铂纳米粒子电极上饱和吸附的NO存在两种不同键合强度的吸附态,其中弱吸附的NO(NOW)在0.60 V至-0.05 V电位区间还原生成N2O和NH4+;而强吸附的NO(NOS)则在-0.05 V至-0.15 V区间还原,其产物为NH+.  相似文献   

11.
To understand the influence of surface interactions upon the magnetic properties of magnetic nanoparticles, the surface of manganese ferrite, MnFe(2)O(4), nanoparticles have been systematically modified with a series of para-substituted benzoic acid ligands (HOOC-C(6)H(4)-R; R = H, CH(3), Cl, NO(2), OH) and substituted benzene ligands (Y-C(6)H(5), Y = COOH, SH, NH(2), OH, SO(3)H). The coercivity of magnetic nanoparticles decreases up to almost 50% upon the coordination of the ligands on the nanoparticle surface, whereas the saturation magnetization has increased. The percentage coercivity decrease of the modified nanoparticles with respect to the native nanoparticles strongly correlates with the crystal field splitting energy (CFSE) Delta evoked by the coordination ligands. The ligand inducing largest CFSE results in the strongest effect on the coercivity of magnetic nanoparticles. The change in magnetic properties of nanoparticles also correlates with the specific coordinating functional group bound onto the nanoparticle surface. The correlations suggest the decrease in spin-orbital couplings and surface anisotropy of magnetic nanoparticles due to the surface coordination. Such surface effects clearly show the dependence on the size of nanoparticles.  相似文献   

12.
Adsorption of chicken egg lysozyme on silica nanoparticles of various diameters has been studied. Special attention has been paid to the effect of nanoparticle size on the structure and function of the adsorbed protein molecules. Both adsorption patterns and protein structure and function are strongly dependent on the size of the nanoparticles. Formation of molecular complexes is observed for adsorption onto 4-nm silica. True adsorptive behavior is evident on 20- and 100-nm particles, with the former resulting in monolayer adsorption and the latter yielding multilayer adsorption. A decrease in the solution pH results in a decrease in lysozyme adsorption. A change of protein structure upon adsorption is observed, as characterized by a loss in alpha-helix content, and this is strongly dependent on the size of the nanoparticle and the solution pH. Generally, greater loss of alpha helicity was observed for the lysozyme adsorbed onto larger nanoparticles under otherwise similar conditions. The activity of lysozyme adsorbed onto silica nanoparticles is lower than that of the free protein, and the fraction of activity lost correlates well with the decrease in alpha-helix content. These results indicate that the size of the nanoparticle, perhaps because of the contributions of surface curvature, influences adsorbed protein structure and function.  相似文献   

13.
The adsorption of poly(acrylic acid) (PAA) in aqueous suspension onto the surface of TiO(2) nanoparticles was investigated. FTIR spectroscopic data provided evidence in support of hydrogen bonding and chemical interaction in the case of the PAA-TiO(2) system. Adsorption isotherms demonstrated that part of the PAA initially added to the suspension was adsorbed onto the TiO(2) surface, after which there was a gradual attainment of an adsorption plateau. The adsorption density of PAA was found to increase with an increase of PAA molecular weight, while it decreased with an increase of pH. The thickness of the PAA adsorption layer was calculated based on measurements of suspension viscosities in the absence and presence of PAA. It was shown that the thickness of the adsorption layer increased with the increase of pH, PAA molecular weight, and its concentration. The surface charge density, the diffuse charge density, and the zeta potential of TiO(2) varied distinctly after PAA adsorption. The shift of pH(iep) toward a lower pH value was observed in the presence of PAA. PAA was found to stabilize the suspension of TiO(2) nanoparticles through electrosteric repulsion. The influence of factors such as PAA molecular weight and its concentration on the colloidal stability of the aqueous suspension was also investigated.  相似文献   

14.
壳聚糖亲和磁性毫微粒的制备及其对蛋白质的吸附性能研究   总被引:35,自引:0,他引:35  
以壳聚糖为包裹材料包埋自制的磁流体 ,制备了具有核 壳结构的磁性毫微粒 ,并偶联色素配基CibacronBlue 3GA(偶联量 1 4 .5μmol/mL)得到了一种新型亲和磁性毫微粒 .结果表明 ,所得亲和磁性微球具有较窄的粒径分布、形状规整 .以牛血清白蛋白 (BSA)和溶菌酶 (Lys)为目标蛋白 ,考察了该亲和磁性毫微粒的吸附性能 ,发现其对BSA和Lys的吸附量分别为 4和 2 8mg/g,吸附行为满足Langmuir吸附等温式 ,且对时间依赖性小而对溶液离子强度敏感 .  相似文献   

15.
Adsorption properties of parent γ-alumina, and γ-alumina, modified with nickel nanoparticles (from 0.6 to 18 wt %), are investigated by dynamic sorption. N-hexane, benzene, chloroform, diethyl ether, chlorobenzene, and o-dichlorobenzene are used as test adsorbates. Adsorption isotherms are measured, and isosteric adsorption heats are calculated. Electron-donating and electron-accepting characteristics of surfaces of parent γ-alumina and γ-alumina, modified with Ni nanoparticles, are estimated. It is established that the surface of parent γ-alumina has mainly electron-accepting properties, while the surface of γ-alumina modified with Ni nanoparticles has electron-donating properties. It is shown that benzene and chlorobenzene are sorbed via physical adsorption on the parent and modified γ-alumina, and o-dichlorobenzene is sorbed via chemosorption.  相似文献   

16.
Adsorption constants of a diverse set of 50 organic vapors have been measured on quartz (SiO(2)), CaCO(3), and alpha-Al(2)O(3) at different relative humidities at 15 degrees C. For nonpolar compounds we found an exponential decrease of the adsorption constants on a given mineral between 40 and 97% relative humidity. Extrapolated to 100% relative humidity, the adsorption constants of nonpolar compounds on the different minerals coincide and agree with those measured on a bulk water surface. The adsorption constants of polar compounds also decrease with increasing humidity up to 90%, but between 90% and 100% they increase again. We speculate that this effect is due to a change in the orientation of the water molecules that form the surface at which the organic vapors adsorb at this high humidity. The compound variability in the adsorption constants of all compounds on a given surface at a given relative humidity could be described rather well with a linear free energy relationship using Abraham's solvation parameters for the van der Waals and electron-donor/acceptor properties of the compounds. The remaining deviation between fitted and experimental data was found to be systematic, which indicated that an optimized parameter set for the used compounds could still considerably improve the fit.  相似文献   

17.
The electrochemical behavior of arrays of Au nanoparticles assembled on Au electrodes modified by 11-mercaptoundecanoic acid (MUA) and poly-L-lysine (PLYS) was investigated as a function of the particle number density. The self-assembled MUA and PLYS layers formed compact ultrathin films with a low density of defects as examined by scanning tunneling microscopy. The electrostatic adsorption of Au particles of 19 +/- 3 nm on the PLYS layer resulted in randomly distributed arrays in which the particle number density is controlled by the adsorption time. In the absence of the nanoparticles, the dynamics of electron transfer involving the hexacynoferrate redox couple is strongly hindered by the self-assembled film. This effect is primarily associated with a decrease in the electron tunneling probability as the redox couple cannot permeate through the MUA monolayer at the electrode surface. Adsorption of the Au nanoparticles dramatically affects the electron-transfer dynamics even at low particle number density. Cyclic voltammetry and impedance spectroscopy were interpreted in terms of classical models developed for partially blocked surfaces. The analysis shows that the electron transfer across a single particle exhibits the same phenomenological rate constant of electron transfer as for a clean Au surface. The apparent unhindered electron exchange between the nanoparticles and the electrode surface is discussed in terms of established models for electron tunneling across metal-insulator-metal junctions.  相似文献   

18.
A quartz crystal microbalance was used to study the influence of nanobubbles on the adsorption of polystyrene nanoparticles onto surfaces coated with gold, or coated with dodecanethiol or mercaptoundecanoic acid self-assembled monolayers (SAMs). Adsorption of the nanoparticles onto the surface causes the resonant frequency of the quartz crystal to decrease. We found that particles were adsorbed onto the gold-coated quartz crystal in air-rich water, but not in degassed water. This finding supports the long-standing hypothesis that nanobubbles play a key role in the long-range attractive force between hydrophobic surfaces in aqueous solutions. When the experiments were conducted using quartz crystals coated with a hydrophobic dodecanethiol SAM, the nanoparticles were adsorbed onto the surface even in degassed water due to the short-range hydrophobic interactions between the nanoparticles and the dodecanethiol molecules. In contrast, the nanoparticles were adsorbed to a lesser degree onto the hydrophilic mercaptoundecanoic acid-coated crystals due to electrostatic repulsive forces.  相似文献   

19.
Surface of magnetic silica nanoparticles is modified by grafting with carboxymethyl-β-cyclodextrin (CM-β-CD) via carbodiimide activation. The functionalized magnetic core-shell nanoparticles (MNPs) are characterized by Transmission Electron Microscopy (TEM), Fourier Transform Infra Red (FTIR) spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Vibrating Sample Magnetometer (VSM). These nano-sized particles are scrutinized for adsorption of certain chiral aromatic amino acid enantiomers namely, d- and l-tryptophan (Trp), d- and l-phenylalanine (Phe) and d- and l-tyrosine (Tyr) from phosphate buffer solutions. Adsorption capacities of the coated magnetic nanoparticles toward amino acid enantiomers are in the order: l-Trp>l-Phe>l-Tyr and under the same condition, adsorption capacities are higher for l-enantiomers than the corresponding d-enantiomers. All the equilibrium adsorption isotherms are fitted well to Freundlich model. FTIR studies depict significant changes after adsorption of amino acids onto nanoparticles. The stretching vibration frequencies of NH bonds of the amino acid molecules are changed with complex formation through host-guest interaction. The structure and hydrophobicity of amino acid molecules emphasize the interactions between amino acid molecules and the nano-adsorbents bearing cyclodextrin, thus play important roles in the difference of their adsorption behaviors.  相似文献   

20.
Adsorption of decyl-, dodecyl-, and hexadecylpyridinium chlorides (DePC, DoPC, and CPC, respectively) from aqueous solutions on the surface of detonation nanodiamonds (NDs) and its effect on the aggregation stability of ND hydrosols are studied. Hydrophobic interactions, which are enhanced with the length of hydrocarbon chains in surfactant molecules, are found to play the main role in surfactant adsorption on the ND surface. DePC is almost not adsorbed on NDs, and its addition has no effect on both the size and ζ potential of nanoparticles. Adsorption of DoPC decreases the ζ potential of ND particles, thus causing their coagulation. Superequivalent adsorption of CPC results in sign reversal of the ζ potential of ND particles, thereby leading to alternation of the zones of aggregation stability and coagulation of the hydrosols with a rise in the concentration of this surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号