首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anomalous Hall effect due to the spin chirality order and fluctuation is studied theoretically in a Kondo lattice model without the relativistic spin-orbit interaction. Even without the correlations of the localized spins, sigma(xy) can emerge depending on the lattice structure and the spin anisotropy. We reveal the condition for this chirality-fluctuation driven mechanism for sigma(xy). Our semiquantitative estimates for a pyrochlore oxide Nd2Mo2O7 give a finite sigma(xy) approximately equal 10 Omega(-1) cm(-1) together with a high resistivity rho(xx) approximately equal 10(-4)-10(-3) Omega cm, in agreement with experiments.  相似文献   

2.
The La dilution of the Kondo lattice CeCoIn5 is studied. The scaling laws found for the magnetic susceptibility and the specific heat reveal two well-separated energy scales, corresponding to the single-impurity Kondo temperature T(K) and an intersite spin-liquid temperature T(*). The Ce-dilute alloy has the expected Fermi liquid ground state, while the specific heat and resistivity in the dense Kondo regime exhibit non-Fermi-liquid behavior, which scales with T(*). These observations indicate that the screening of the magnetic moments in the lattice involves antiferromagnetic intersite correlations with a larger energy scale in comparison with the Kondo impurity case.  相似文献   

3.
The electrical resistivity of the Kondo alloy Au (20ppm Cr) and of pure gold has been determined in the temperature range 1.3 – 20 K at pressures up to 80 kbar. For pure gold the pressure dependence of the temperature dependent part of the lattice resistivity can be explained fairly well by the Bloch-Grüneisen theory. Expressions for the volume dependence of the ideal lattice resistivity and of the Debye-temperature for gold are derived. — The Kondo temperatureT K of Au(Cr) is found to increase with pressure to more than twice the value atp=0 kbar.Therefrom the volume dependence of the effective exchange constantJ is calculated. The results are similar as in other Kondo alloys described previously.  相似文献   

4.
In this work for the first time, we are reporting the unusual observation of the Kondo effect with the coexistence of room temperature ferromagnetism in AlN/Al/AlN trilayer thin film. The grown film shows resistivity minimum at a temperature of ∼48K, which shifts to the lower temperature on the application of magnetic fields. After considering various possibilities for an upturn in resistivity, we found that the Kondo scattering is responsible for upturn at low temperature. The simultaneous presence of ferromagnetism and Kondo scattering is explained by spatial variation of nitrogen vacancy defects from the film surface to the Al sandwich layer. Furthermore, magneto-transport properties of the film measured at different temperature exhibits both negative and positive components described by localized magnetic moment model for the spin scattering of carriers and two-band model, respectively. This work provides insight into the novel co-existence of ferromagnetism and Kondo effect in crystalline AlN.  相似文献   

5.
The interdependences of the Iow temperature properties in heavy fermion compounds with the Kondo lattice parameters are obtained from a two-conduction band periodic s-f exchange model by using the Green’s function method .The results indicate that the anomalous Iow temperature properties of the specific heat,resistivity and the static magnetic susceptibility in the heavy fermion systems are all the characteristic fea- tures of the Xondo Iattice. The influences of the pressure on the Kondo temperature TX and on the superconducting transition temperature TC in the heavy fermion systems are also discussed.  相似文献   

6.
The thermal conductivity κ and electrical resistivity ρ of a cast polycrystalline sample of YbIn0.2Ag0.8Cu4, which belongs to the class of moderate heavy-fermion compounds, are measured in the temperature range 5–300 K. It is shown that the phonon thermal conductivity of the sample follows an amorphous-like pattern throughout the temperature range covered, which should be assigned to the presence of Yb ions with a homogeneous mixed valence in this compound. The temperature dependence ρ(T) is divided into three portions: a high-temperature portion characteristic of conventional metals, a medium-temperature portion typical of Kondo compounds, and a low-temperature portion corresponding to a coherent Kondo lattice (the heavy-fermion regime). The Kondo temperature is estimated.  相似文献   

7.
The temperature dependent specific heat studies of a Ru substituted Fe1−xRuxSi Kondo Insulating system has been carried out in the 77 to 300 K range. The specific heat has been analyzed based on contributions from an electronic part and a lattice part. For the electronic part a Gaussian density of states model, which incorporates the effect of correlation, band structure and disorder in its defining parameters is used. The lattice part of specific heat is described in the Debye model. Parameters that define the electronic density of states and the Debye temperature are extracted from fits of the temperature dependent specific heat data and are compared with earlier resistivity measurements that employed a similar analysis.  相似文献   

8.
The effects of substitution of Ce by La in the orthorhombic CeNi1 − xPtx dense Kondo ferromagnets are studied by means of magnetization and electrical resistivity measurements. A decrease of the exchange RKKY interactions leads to a decrease of the Curie temperature Tc as a function of the La content and hence to an enhancement of the Kondo character in the thermal dependence of the resisitivity. However, the Ce moment is almost independent of the La amount. The Kondo temperature being also independent, this surprising result seems in contradiction with the available Kondo lattice models.  相似文献   

9.
Annealed Indium films have been implanted with 150 keV-Mn ions at low temperatures. TheT c -depression and the low temperature part of the resistivity exhibit the Kondo effect, the Kondo temperature being strongly influenced by lattice defects. The lattice disorder has been increased by pre-implantation of In ions. The influence of lattice disorder on the magnetic properties ofIn Mn alloys is explained by applying the strong coupling theory of superconductors.It is found that the main effect results from a shift of the Fermi energy relative to the virtual bound state, due to a variation of the effective massm 0·(1+).  相似文献   

10.
We have measured the magnetoresistance ρ(H,T0) of the magnetic Kondo lattice CeAl2 at temperatures T0 in the range 0.035 – 1.3 K, well below the Néel temperature TN=3.8 K, in magnetic fields H up to 145 k0e. The ρ vs H curve exhibits a rapid decrease between H=45–65 kOe corresponding to the metamagnetic transition at H=HM. The resistivity then levels out to a value which depends only weakly on field and temperature. For HM a small positive magnetoresistance was observed with the derivative dρ/dH increasing as the temperature is lowered. The present results are compared with the ρ(H,T0) data obtained for the CePb3 magnetic Kondo lattice, where the decrease in the resistivity at HHM was considered earlier to be evidence of field induced superconductivity.  相似文献   

11.
We present the results of lattice parameters at room temperature, the static magnetic susceptibility and the magnetic resistivity between 1.8 and 300 K, and the low-temperature specific-heat measurements for the series Ce(Pt1−xPdx)Ga, (x=0.0, 0.2, 0.5, 0.8 and 1.0). Two maxima in the temperature dependence of the magnetic resistive curve for each sample are observed, one above 100 K, and another at around 4 K, which due to an interplay between crystal-field effect and the Kondo effect. As determined from the peak values of the temperature dependence of the specific heat data C(T), all samples exhibit antiferromagnetic ordering from 1.3 K for CePdGa to 3.4 K for CePtGa. The large reduction of entropy for each sample below TN is associated with the Kondo effect.  相似文献   

12.
稀磁合金的杂质互作用效应   总被引:6,自引:0,他引:6       下载免费PDF全文
本文用格林函数方法讨论Tk(Kondo温度)时杂质互作用对Kondo效应的影响。对s-d互作用哈密顿量作自洽场近似时,同时计入导致Kondo效应和产生杂质互作用的切断项,求得了杂质系统的Kondo温度和低温电阻。结果表明:在稀磁合金中,杂质间的互作用效应使Kondo温度下降,并且使T《Tk时的电阻率温度变化曲线由(1-AT2)型变为(1+BT2)型(A,B>0),从而可能在Tk温区产生电阻极大。 关键词:  相似文献   

13.
We report results of low-temperature thermodynamic and transport measurements of Pb1-xTlxTe single crystals for Tl concentrations up to the solubility limit of approximately x=1.5%. For all doped samples, we observe a low-temperature resistivity upturn that scales in magnitude with the Tl concentration. The temperature and field dependence of this upturn are consistent with a charge Kondo effect involving degenerate Tl valence states differing by two electrons, with a characteristic Kondo temperature T(K) approximately 6 K. The observation of such an effect supports an electronic pairing mechanism for superconductivity in this material and may account for the anomalously high T(c) values.  相似文献   

14.
We have investigated the effect of local magnetic moment on the electrical and magneto-transport properties of thin films of the degenerate semiconductor Ti(1-x)Fe(x)O(2-d) (x = 0,0.04). The electrical measurements of these films reveal high temperature metallic behavior and resistivity minima. The behavior below the resistivity minimum temperature is ascribed to Kondo like scattering. The coupling between the local moment and the charge carriers is reflected in the magnetoresistance measurements in these films. This work indicates competition between the magnetic ordering mechanism by J(RKKY) and the moment screening mechanism by J(Kondo). Accordingly the role of carrier density in achieving the magnetic ordering in such materials either by defect engineering or by transition metal doping is discussed.  相似文献   

15.
The temperature of the resistivity maximum, Tm, in the ternary spin glass system Au-Cu-Mn has been analysed in terms of Larsen's theory in order to highlight the contribution from the Kondo effect and the RKKY interaction energy to the resistivity maximum in spin glasses. The competition between these two contributions has been effectively illustrated and a good agreement with theory is obtained for samples with varying magnetic and nonmagnetic atom concentration. A comparison of the dependence of Tm and the RKKY interaction energy on the lattice pressure generated due to addition of Au with reported pressure studies on Mn alloys shows that there is a close relation between the lattice pressure and the externally applied pressure.  相似文献   

16.
The temperature dependences of resistivity and thermal emf on a Kondo lattice are calculated using the spin-polaron approximation. The peaks and sign reversal points of thermal emf as a function of temperature and concentration below the temperature of the transition to the paramagnetic state are determined. The concentration region containing the metal-insulator transition below the Curie temperature and the shift of the upper spin-polaron band are calculated.  相似文献   

17.
Motivated by recent experiments on Yb-doped CeCoIn5, we study the effect of correlated disorder in a Kondo lattice. Correlations between the impurities are considered at the two-particle level. We use a mean-field theory approximation for the Anderson lattice model to calculate how the emergence of coherence in the Kondo lattice is impacted by correlations between impurities. We show that the rate at which disorder suppresses coherence temperature depends on the length of the impurity correlations. As the impurity concentration increases, we generally find that the suppression of coherence temperature is significantly reduced. The results are discussed in the context of available experimental data.  相似文献   

18.
Strongly frustrated magnetism of the metallic pyrochlore oxide Pr2Ir2O7 has been revealed by single crystal study. While Pr 4f moments have an antiferromagnetic RKKY interaction energy scale of /T*/ = 20 K mediated by Ir 5d-conduction electrons, no magnetic long-range order is found except for partial spin freezing at 120 mK. Instead, the Kondo effect, including a lnT dependence in the resistivity, emerges and leads to a partial screening of the moments below /T*/. Our results indicate that the underscreened moments show spin-liquid behavior below a renormalized correlation scale of 1.7 K.  相似文献   

19.
We theoretically present the results for a scanning tunneling transport between a metallic tip and a Kondo lattice.We calculate the density of states(DOS)and the tunneling current and differential conductance(DC)under different conduction-fermion band hybridization and temperature in the Kondo lattice.It is found that the hybridization strength and temperature give asymmetric coherent peaks in the DOS separated by the Fermi energy.The corresponding current and DC intensity depend on the temperature and quantum interference effect among the c-electron and f-electron states in the Kondo lattice.  相似文献   

20.
Many heavy fermion materials are known to cross over from the Kondo lattice regime to the mixed valence regime or vice versa as a function of pressure or doping. We study this crossover theoretically by employing the periodic Anderson model within the framework of the dynamical mean field theory. Changes occurring in the dynamics and transport across this crossover are highlighted. As the valence is decreased (increased) relative to the Kondo lattice regime, the Kondo resonance broadens significantly, while the lower (upper) Hubbard band moves closer to the Fermi level. The resistivity develops a two peak structure in the mixed valence regime: a low temperature coherence peak and a high temperature 'Hubbard band' peak. These two peaks merge, yielding a broad shallow maximum upon decreasing the valence further. The optical conductivity likewise exhibits an unusual absorption feature (shoulder) in the deep mid-infrared region, which grows in intensity with decreasing valence. The involvement of the Hubbard bands in dc transport and of the effective f-level in the optical conductivity are shown to be responsible for the anomalous transport properties. A two-band hybridization-gap model, which neglects incoherent effects due to many-body scattering, commonly employed to understand the optical response in these materials is shown to be inadequate, especially in the mixed valence regime. Comparison of theory with experiment carried out for (a) dc resistivities of CeRhIn(5), Ce(2)Ni(3)Si(5), CeFeGe(3) and YbIr(2)Si(2), (b) pressure dependent resistivity of YbInAu(2) and CeCu(6), and (c) optical conductivity measurements in YbIr(2)Si(2) yields excellent agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号