首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, a large number of experimental and theoretical works have revealed a variety of plasmonic nanostructures with the capabilities of Fano resonance (FR) generation. Among these structures, plasmonic oligomers consisting of packed metallic nanoelements with certain configurations have been of significant interest. Oligomers can exhibit FR independently of the polarization direction based on dipole–dipole antiparallel modes without the need to excite challenging high‐order modes. The purpose of this review article is to provide an overview of recent achievements on FR of plasmonic nanostructures in recent years. Meanwhile, more attention is given to the optical properties of plasmonic oligomers due to the high potential of such structures in optical spectra engineering.  相似文献   

2.
We present numerical calculations of the local density of optical states (LDOS) in the near field of disordered plasmonic films. The calculations are based on an integral volume method, that takes into account polarization and retardation effects, and allows us to discriminate radiative and non-radiative contributions to the LDOS. At short distance, the LDOS fluctuations are dominated by non-radiative channels, showing that changes in the spontaneous dynamics of dipole emitters are driven by non-radiative coupling to plasmon modes. Maps of radiative and non-radiative LDOS exhibit strong fluctuations, but with substantially different spatial distributions.  相似文献   

3.
This paper reports the experimental observation, at optical frequencies, of the electromagnetic local density of states established by nanostructures corresponding to the recently introduced concept of optical corral [G. Colas des Francs et al., Phys. Rev. Lett. 86, 4950 (2001)]. The images obtained by a scanning near-field optical microscope under specific operational conditions are found in agreement with the theoretical maps of the optical local density of states. A clear functionality of detection by the scanning near-field optical microscope is thereby identified since the theoretical maps are computed without including any specific tip model.  相似文献   

4.
We measure the statistical distribution of the photonic local density of states in the near field of a semicontinuous gold film. By varying the distance between the measurement plane and the film, we show that near-field confined modes play a major role in the width of the distribution. Numerical simulations in good agreement with experiments allow us to point out the influence of nonradiative decay channels at short distance.  相似文献   

5.
In this paper, we have investigated the characteristics of an asymmetric shaped Fano line in a metal–insulator–metal (MIM) plasmonic waveguide side coupled to two resonating stub structures. The spectral properties of Fano resonance are quite distinct due to the destructive interference between a two propagating plasmon modes. Two structural parameters are carefully adjusted: physical separation between both the resonating stubs and length of resonating stubs. By tailoring the separation between both the resonating structures, coupling between both the plasmon modes is controlled, and hence asymmetric nature of Fano line can be shaped accordingly. Resonance condition of Fano line can be tuned by scaling the length of stubs. A strong red shift in resonating wavelength with varying degree of asymmetry is observed, when length of resonating structures is increased. The sharp resonant peak, due to an asymmetric shaped Fano resonance is generally accompanied by large dispersion that results in reduction of group velocity of light near Fano resonance. By controlling the coupling between resonating stub, or by scaling the length of lower resonating stub, large value of group index (ng = 75) and delay bandwidth product (DBP = 0.2533) is obtained. The structure can be modified to suit different applications in optical buffers, optical switches and nonlinear optics devices.  相似文献   

6.
We introduce a new experimental method to measure the local electromagnetic density of states (LDOS) by integrating the differential scattering cross section. The signal detected essentially reflects the intrinsic scattering response of the photonic structures and renders the partial LDOS dominated by evanescent modes. We give a theoretical understanding of the LDOS image formation and show a qualitative agreement between experimental images and theoretical maps. This approach can be practically applied to the direct measurement of an optical antenna's scattering efficiency and can provide valuable information for designing optimum structures utilized in radiative decay engineering.  相似文献   

7.
we report a pure rerromagneuc metallic magnetopiasmonic structure consisting or two-dimensional oraerea Ni nanodisks array on Co film.With a sufficient height of the nanodisks,a steep and asymmetric Fano resonance can be excited in this structure.We attribute the fascinating spectral lineshape to the strong coupling between the excitation of surface plasmon polaritons at the interface and the localized surface plasmon resonance of nanodisks.The conclusion is fully confirmed by spectrum measurements in nanostructures with different heights.Furthermore,the enhancement and sign of the magneto-optical Kerr rotation in this structure are significantly modified by the Fano resonance.  相似文献   

8.
We use single self-assembled InGaAs quantum dots as internal probes to map the local density of optical states of photonic crystal membranes. The employed technique separates contributions from nonradiative recombination and spin-flip processes by properly accounting for the role of the exciton fine structure. We observe inhibition factors as high as 70 and compare our results to local density of optical states calculations available from the literature, thereby establishing a quantitative understanding of photon emission in photonic crystal membranes.  相似文献   

9.
10.
An optical sensor is designed to support the Fano effect based on a compound resonant waveguide grating(CRWG).The transmission spectra of the CRWG are investigated by utilizing a theoretical method that combines the temporal coupled mode theory with the eigenmode information of the grating structure.The theoretical results,which are observed to agree closely with those acquired by rigorous coupled-wave analysis,show that the linewidth of the transmission spectrum decreases upon increasing the distance between the grating strips,and the central resonance frequency decreases as the refractive index of the analyte increases.Here,the proposed CRWG structures will find potential uses in optical sensing.  相似文献   

11.
12.
We investigate the potential of plasmonic resonance in metal nanocomposite materials for the design of photonic crystal all optical switches by numerical methods. We study the absorption effect of the plasmonic resonance on the Fano resonances of one dimensional photonic crystal slabs covered by a metal nanocomposite layer. It is shown that the absorption reduces the contrast of the Fano resonances. However, for adequate metal nanoparticle concentrations it is possible to achieve both sufficiently sharp Fano resonance and strong Kerr nonlinearity, which provides a suitable condition for the design of high contrast and low threshold switches.  相似文献   

13.
We investigate a tunable Fano interferometer consisting of a quantum dot coupled via tunneling to a one-dimensional channel. In addition to Fano resonance, the channel shows strong Coulomb response to the dot, with a single electron modulating channel conductance by factors up to 100. Where these effects coexist, line shapes with up to four extrema are found. A model of Coulomb-modified Fano resonance is developed and gives excellent agreement with experiment.  相似文献   

14.
We have measured the differential conductance of a tunnel junction between a thin metallic wire and a thick ground plane, as a function of the applied voltage. We find that near zero voltage, the differential conductance exhibits a dip, which scales as 1/square root of [V] down to voltages V approximately 10k(B)T/e. The precise voltage and temperature dependence of the differential conductance is accounted for by the effect on the tunneling density of states of the macroscopic electrodynamics contribution to electron-electron interaction, and not by the short-ranged screened-Coulomb repulsion at microscopic scales.  相似文献   

15.
16.
We consider a single atom in an optical lattice, subject to a harmonic trapping potential. The problem is treated in the tight-binding approximation, with an extra parameter kappa denoting the strength of the harmonic trap. It is shown that the kappa-->0 limit of this problem is singular, in the sense that the density of states for a very shallow trap (kappa-->0) is qualitatively different from that of a translationally invariant lattice (kappa=0). The physics of this difference is discussed, and densities of states and wave functions are exhibited and explained.  相似文献   

17.
We study resonant light scattering in arrays of channel optical waveguides in which tunable quadratic non-linearity is introduced as nonlinear defects by periodic poling of single (or several) waveguides in the array. We describe novel features of wave scattering that can be observed in this structure and show that it is a good candidate for observation of Fano resonance in nonlinear optics.  相似文献   

18.
We report the observation of the resonant transport in multiwall carbon nanotubes in a crossed geometry. The resonant transport is manifested by an asymmetric peak in the differential conductance curve. The observed asymmetric conductance peak is well explained by the Fano resonance originating from the scattering at the contact region of the two nanotubes. The conductance peak depends sensitively on the external magnetic field and exhibits Aharonov-Bohm-type oscillation.  相似文献   

19.
Based on the many-body time-dependent approach applied to the ultrafast time region, we investigate the dynamics of creation of an optical phonon incorporating with the electron-hole continuum in a semiconductor. In the transient Fano resonance, due to an interference between those sharp (optical phonon) and continuum (electron-hole pair) quasiparticles, we find the robust destructive interference at birth of them, i.e., tau approximately 0 if the created phonon is coherent under the irradiation of ultrashort optical pulses. The origin is found to be the potential scattering of the electron-hole pair by the q=0 coherent phonon. This finding agrees well with the recent experiment.  相似文献   

20.
Asymmetric resonances in elastic n+19C scattering are attributed to Efimov states of such neutron-rich nuclei, that is, three-body bound states of the n+n+18C system when none of the pairs is bound or some of them are only weakly bound. By fitting to the general resonance shape described by Fano, we extract the resonance position, width, and the "Fano profile index." While Efimov states have been discussed extensively in many areas of physics, there is only one very recent experimental observation in trimers of cesium atoms. The conjunction that we present of the Efimov and Fano phenomena may lead to experimental realization in nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号