首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we generally prove that the axion as a coherently oscillating scalar field acts as a cold dark matter in nearly all cosmologically relevant scales. The proof is made in the linear perturbation order. Compared with our previous proof based on solutions, here we compare the equations in the axion with the ones in the cold dark matter, thus expanding the valid range of the proof. Deviation from purely pressureless medium appears in very small scale where axion reveals a peculiar equation of state. Our analysis is made in the presence of the cosmological constant, and our conclusions are valid in the presence of other fluid and field components.  相似文献   

2.
Localized solutions of an axion-like scalar model with a periodic self-interaction are analyzed as a model of dark matter halos. It is shown that such a cold Bose–Einstein type condensate can provide a substantial contribution to the observed rotations curves of galaxies, as well provide a soliton type interpretation of the dark matter ‘bullets’ observed via gravitational lensing in merging clusters.  相似文献   

3.
Although dark matter is supposed to provide with more than 0.9 of the total fraction of the mass-energy in universe, its amount and properties can only be defined a posteriori. In this context, a crucial point concerns the identification of a possible clear feature of dark matter fields which is not arbitrary, i.e. a property which has to be satisfied by dark matter fluctuations under some very general theoretical conditions. We discuss the fact that this property, in standard cosmological models, is represented by super-homogeneity, i.e. a very fine tuned balance between negative and positive correlations of density fluctuations, which must be imprinted both in the anisotropies of the CMBR and in the large scale distribution of galaxies. We review the main aspects of this property, considering examples of super-homogeneous systems well-studied in statistical physics, and discuss its possible observational evidences.  相似文献   

4.
正The self-interacting dark matter(SIDM) model is an ideal candidate for explaining the discrepancy between small-scale structure observations and predictions by the prevailing collisionless cold dark matter(CDM) model. SIDM indicates the existence of a light mediator with a typical mass of 10 MeV. Searching for SIDM particles has therefore become one important alternative to the traditional weakly interacting massive particles(WIMPs) in direct detection experiments such as PandaX.  相似文献   

5.
The original mimetic model was proposed to take the role of dark matter. In this paper we consider possible direct interactions of mimetic dark matter with other matter in the universe, especially standard model particles such as baryons and photons. By imposing shift symmetry, the mimetic dark matter field can only have derivative couplings. We discuss the possibilities of generating baryon number asymmetry and cosmic birefringence in the universe based on the derivative couplings of mimetic dark matter to baryons and photons.  相似文献   

6.
7.
Taking into account effects of late energy injection, we examine big bang nucleosynthesis (BBN) constraints on axino dark matter scenarios with long-lived charged sleptons. We calculate 4-body slepton decays into the axino, a lepton, and a quark–antiquark pair since they govern late hadronic energy injection and associated BBN constraints. For supersymmetric hadronic axion models, we present the obtained hadronic BBN constraints and show that they can be more restrictive than the ones associated with catalyzed BBN via slepton-bound-state formation. From the BBN constraints on hadronic and electromagnetic energy release, we find new upper limits on the Peccei–Quinn scale.  相似文献   

8.
Hypothesis of friedmons as dark matter particles is proposed. Friedmons are stable particles with a mass of billion nucleon masses. These particles correspond to the not yet been discovered exact symmetry group dual to the SU(2) group: for the Standard model symmetries and dual symmetries, the roles of exact and broken symmetries and corresponding stable and unstable particles change places. The hypothesis of the decay of the primordial de Sitter vacuum of the Planck density to an asymptotic state of the expanding Universe with de Sitter vacuum of the observed critical density is proposed. The T -duality and S-duality hypotheses relating subgroups SU(3)×SU(2)×U(1) and dual subgroups S??(3)× S??(2) × ??(1) with decay of the primordial symmetry group E(8) × ??(8) are proposed. In particular, these dualities relate the minimum Planck length 10?13 cm to the primordial curvature radius 10?13 cmof theMetagalaxy of the Planck density and its modern curvature radius of 1028 cm. That is, the probable relation of the Planck mass to the Metagalaxy mass of 1061 Planck masses is indicated.  相似文献   

9.
We study the evolution of an inhomogeneous fluid with self-similarity of the second kind and anisotropic pressure. We found a class of solution to the Einstein field equations by assuming an equation of state where the radial pressure of the fluid is proportional to its energy density () and that the fluid moves along time-like geodesics. The equation of state combined with the self-similarity of second kind implies ω = −1. The energy conditions, geometrical and physical properties of the solutions are studied. We have found that, for the self-similar parameter , the solution represents an accelerated cosmological model ending in a Big Rip stage.  相似文献   

10.
A general holographic relation between UV and IR cutoff of an effective field theory is proposed. Taking the IR cutoff relevant to the dark energy as the Hubble scale, we find that the cosmological constant is highly suppressed by a numerical factor and the fine tuning problem seems alleviative. We also use different IR cutoffs to study the case in which the universe is composed of matter and dark energy.  相似文献   

11.
We review recent attempts to address the cosmological constant problem and the late-time acceleration of the Universe based on braneworld models. In braneworld models, the way in which the vacuum energy gravitates in the 4D spacetime is radically different from conventional 4D physics. It is possible that the vacuum energy on a brane does not curve the 4D spacetime and only affects the geometry of the extra-dimensions, offering a solution to the cosmological constant problem. We review the idea of supersymmetric large extra dimensions that could achieve this and also provide a natural candidate for a quintessence field. We also review the attempts to explain the late-time accelerated expansion of the universe from the large-distance modification of gravity based on the braneworld. We use the Dvali–Gabadadze–Porrati model to demonstrate how one can distinguish this model from dark energy models in 4D general relativity. Theoretical difficulties in this approach are also addressed.  相似文献   

12.
Assuming that the positron excess in PAMELA satellite data is a consequence of annihilations of cold dark matter, we consider from a model-independent perspective if the data show a preference for the spin of dark matter, and find that they do not. We then perform a general analysis of annihilations into two-body states to determine what weighted combination of channels best describes the data.  相似文献   

13.
The exact solutions of the Einstein field equations for dark energy in Kantowski-Sachs metric under the assumption on the anisotropy of the fluid are obtained for exponential and power-law volumetric expansions. The isotropy of the fluid, space and expansion are examined.  相似文献   

14.
The need for dark matter is briefly reviewed. A wealth of observational information points to the existence of a non-baryonic component. To the theoretically favoured candidates today belong axions, supersymmetric particles, and to some extent massive neutrinos. The theoretical foundation and experimental situation for each of these is reviewed. In particular, indirect detection methods of supersymmetric dark matter are described. Present experiments are just reaching the required sensitivity to discover or rule out some of these candidates, and major improvements are planned over the next few years.  相似文献   

15.
We show that, in the context of brane-world scenarios with low tension tau=f(4), massive brane fluctuations (branons) are natural dark matter candidates. We calculate the present abundances for both hot (warm) and cold branons in terms of the branon mass M and the tension scale f. The results are compared with the current experimental bounds on these parameters. We also study the prospects for their detection in direct search experiments and comment on their characteristic signals in the indirect ones.  相似文献   

16.
We propose that cold dark matter is made of Kaluza-Klein particles and explore avenues for its detection. The lightest Kaluza-Klein state is an excellent dark matter candidate if standard model particles propagate in extra dimensions and Kaluza-Klein parity is conserved. We consider Kaluza-Klein gauge bosons. In sharp contrast to the case of supersymmetric dark matter, these annihilate to hard positrons, neutrinos, and photons with unsuppressed rates. Direct detection signals are also promising. These conclusions are generic to bosonic dark matter candidates.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号