首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
液滴数字聚合酶链式反应芯片及其在致病菌检测中的应用   总被引:1,自引:0,他引:1  
设计与制作了一种基于聚二甲基硅氧烷-玻璃(PDMS-Glass)的多功能集成式液滴数字聚合酶链式反应(ddPCR)芯片,该芯片由产生液滴的PDMS模块和收集液滴的玻璃腔体模块组成。PDMS模块采用双通道的T形结构设计,液滴产生速度快且通量高,在30 min内可生成2×10~6个直径约为20μm的微液滴。玻璃腔体模块中存储的液滴在整个实验过程中无需转移,可直接在原位PCR仪上进行扩增,每个液滴均是一个微反应器,经过多次热循环后,液滴仍能保持良好的稳定性。选用副溶血性弧菌(VP)作为食源性致病菌的研究模型,考察了ddPCR芯片对其基因组DNA的绝对定量能力,结果表明,该ddPCR芯片对VP基因组DNA绝对定量的线性范围宽,可跨越5个数量级(10~1~10~6 copies/μL),定量结果与DNA理论参考浓度间有很好的相关性。  相似文献   

2.
Miniaturized isothermal nucleic acid amplification, a review   总被引:1,自引:0,他引:1  
Asiello PJ  Baeumner AJ 《Lab on a chip》2011,11(8):1420-1430
Micro-Total Analysis Systems (μTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.  相似文献   

3.
Fang X  Chen H  Xu L  Jiang X  Wu W  Kong J 《Lab on a chip》2012,12(8):1495-1499
In this work, we developed a portable integrated microchip of loop-mediated isothermal nucleic acid amplification (LAMP). This chip, with sample-to-answer capability, could perform rapid DNA release, exponential signal amplification and naked-eye result read-out in single or multiplex format. We call it iμLAMP, namely integrated micro-LAMP, which was successfully used for point-of-care identification of bacteria.  相似文献   

4.
By 2012, point of care (POC) testing will constitute roughly one third of the $59 billion in vitro diagnostics market. The ability to carry out multiplexed genetic testing and wireless connectivity are emerging as key attributes of future POC devices. In this study, an inexpensive, user-friendly and compact device (termed Gene-Z) is presented for rapid quantitative detection of multiple genetic markers with high sensitivity and specificity. Using a disposable valve-less polymer microfluidic chip containing four arrays of 15 reaction wells each with dehydrated primers for isothermal amplification, the Gene-Z enables simultaneous analysis of four samples, each for multiple genetic markers in parallel, requiring only a single pipetting step per sample for dispensing. To drastically reduce the cost and size of the real-time detector necessary for quantification, loop-mediated isothermal amplification (LAMP) was performed with a high concentration of SYTO-81, a non-inhibiting fluorescent DNA binding dye. The Gene-Z is operated using an iPod Touch, which also receives data and carries out automated analysis and reporting via a WiFi interface. This study presents data pertaining to performance of the device including sensitivity and reproducibility using genomic DNA from Escherichia coli and Staphylococcus aureus. Overall, the Gene-Z represents a significant step toward truly inexpensive and compact tools for POC genetic testing.  相似文献   

5.
Point-of-care (POC) genetic diagnostics critically depends on miniaturization and integration of sample processing, nucleic acid amplification, and detection systems. Polymerase chain reaction (PCR) assays have extensively applied for the diagnosis of genetic markers of disease. Microfluidic chips for microPCR with different materials and designs have been reported. Temperature cycling systems with varying thermal masses and conductivities, thermal cycling times, flow-rates, and cross-sectional areas, have also been developed to reduce the nucleic acid amplification time. Similarly, isothermal amplification techniques (e.g., loop-mediated isothermal amplification or LAMP), which are still are emerging, have a better potential as an alternative to PCR for POC diagnostics. Isothermal amplification techniques have: (i) moderate incubation temperature leading to simplified heating and low power consumption, (ii) yield high amount of amplification products, which can be detected either visually or by simple detectors, (iii) allow direct genetic amplification from bacterial cells due to the superior tolerance to substances that typically inhibit PCR, (iv) have high specificity, and sensitivity, and (v) result in rapid detection often within 10–20 min. The aim of this review is to provide a better understanding of the advantages and limitations of microPCR and microLAMP systems for rapid and POC diagnostics.  相似文献   

6.
Highly sensitive digital nucleic acid techniques are of great significance for the prevention and control of epidemic diseases. Here we report the development of multiplexed droplet loop-mediated isothermal amplification (multiplexed dLAMP) with scorpion-shaped probes (SPs) and fluorescence microscopic counting for simultaneous quantification of multiple targets. A set of target-specific fluorescence-activable SPs are designed, which allows establishment of a novel multiplexed LAMP strategy for simultaneous detection of multiple cDNA targets. The digital multiplexed LAMP assay is thus developed by implementing the LAMP reaction using a droplet microfluidic chip coupled to a droplet counting microwell chip. The droplet counting system allows rapid and accurate counting of the numbers of total droplets and the positive droplets by collecting multi-color fluorescence images of the droplets in a microwell. The multiplexed dLAMP assay was successfully demonstrated for the quantification of HCV and HIV cDNA with high precision and detection limits as low as 4 copies per reaction. We also verified its potential for simultaneous digital assay of HCV and HIV RNA in clinical plasma samples. This multiplexed dLAMP technique can afford a useful platform for highly sensitive and specific detection of nucleic acids of viruses and other pathogens, enabling rapid diagnosis and prevention of infectious diseases.

The development of multiplexed dLAMP with scorpion-shaped probes and fluorescence microscopic counting affords simultaneous digital quantification of multiple virus RNAs.  相似文献   

7.
Digital droplet reactors are useful as chemical and biological containers to discretize reagents into picolitre or nanolitre volumes for analysis of single cells, organisms, or molecules. However, most DNA based assays require processing of samples on the order of tens of microlitres and contain as few as one to as many as millions of fragments to be detected. Presented in this work is a droplet microfluidic platform and fluorescence imaging setup designed to better meet the needs of the high-throughput and high-dynamic-range by integrating multiple high-throughput droplet processing schemes on the chip. The design is capable of generating over 1-million, monodisperse, 50 picolitre droplets in 2-7 minutes that then self-assemble into high density 3-dimensional sphere packing configurations in a large viewing chamber for visualization and analysis. This device then undergoes on-chip polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the sample's nucleic acid contents. Wide-field fluorescence images are captured using a low cost 21-megapixel digital camera and macro-lens with an 8-12 cm(2) field-of-view at 1× to 0.85× magnification, respectively. We demonstrate both end-point and real-time imaging ability to perform on-chip quantitative digital PCR analysis of the entire droplet array. Compared to previous work, this highly integrated design yields a 100-fold increase in the number of on-chip digitized reactors with simultaneous fluorescence imaging for digital PCR based assays.  相似文献   

8.
为了实现对核酸的高灵敏度检测,构建了一种新型的液滴式数字聚合酶链式反应(dd PCR)芯片.该芯片由产生液滴的聚二甲基硅氧烷(PDMS)模块和储存液滴的玻璃腔室构成.实验结果表明,该芯片可以在25 min内产生2×106个直径为20μm的微液滴(体积4.187 p L).利用该芯片定量检测了表皮生长因子受体(EGFR)基因第19号外显子,在DNA浓度为106~101copies/μL范围内呈现良好的线性关系(R2=0.9998);在浓度为106copies/μL的19号外显子野生型DNA中检测105~100copies/μL的突变型DNA,其检测敏感度可达到0.0001%.该方法在同一芯片上实现了液滴产生、核酸扩增和荧光信号读取的功能,在核酸绝对定量及痕量突变基因的检测中具有潜在应用前景.  相似文献   

9.
液滴微流控系统在数字聚合酶链式反应中的应用研究进展   总被引:1,自引:0,他引:1  
范一强  王玫  高峰  庄俭  唐刚  张亚军 《分析化学》2016,(8):1300-1307
数字聚合酶链式反应( PCR)技术近年来发展迅速。与以实时荧光定量PCR为代表的传统PCR技术相比,数字PCR技术显著提高了定量分析的精确度和灵敏度。数字PCR的快速发展与近年来微流控技术在数字PCR技术中的广泛应用有着密切的联系。早期的研究和商业化产品使用的是大规模集成流路微流控芯片,加工过程复杂且价格高昂。近年来,液滴微流控芯片被应用到数字PCR技术中,它可以在短时间内产生102~107个微液滴,每一个微液滴都是最多只含有一个目的基因片段的PCR反应器。 PCR扩增后,通过对单个微液滴的观察计数,就可以获得绝对定量的分析数据。本文综述了不同种类的液滴微流控系统在数字PCR技术中的应用,以及液滴数字PCR微流控芯片在生物、医药、环境等领域的应用。  相似文献   

10.
Despite the importance of early diagnosis and treatment of HIV, only a small fraction of HIV-exposed infants in low- and middle-income countries are tested for the disease. The gold standard for early infant diagnosis, DNA PCR, requires resources that are unavailable in poor settings, and no point-of-care HIV DNA test is currently available. We have developed a device constructed of layers of paper, glass fiber, and plastic that is capable of performing isothermal, enzymatic amplification of HIV DNA. The device is inexpensive, small, light-weight, and easy to assemble. The device stores lyophilized enzymes, facilitates mixing of reaction components, and supports recombinase polymerase amplification in five steps of operation. Using commercially available lateral flow strips as a detection method, we demonstrate the ability of our device to amplify 10 copies of HIV DNA to detectable levels in 15 min. Our results suggest that our device, which is designed to be used after DNA extraction from dried-blood spots, may serve in conjunction with lateral flow strips as part of a point-of-care HIV DNA test to be used in low resource settings.  相似文献   

11.
A nanoliter rotary device for polymerase chain reaction   总被引:17,自引:0,他引:17  
Liu J  Enzelberger M  Quake S 《Electrophoresis》2002,23(10):1531-1536
Polymerase chain reaction (PCR) has revolutionized a variety of assays in biotechnology. The ability to implement PCR in disposable and reliable microfluidic chips will facilitate its use in applications such as rapid medical diagnostics, food control testing, and biological weapons detection. We fabricated a microfluidic chip with integrated heaters and plumbing in which various forms of PCR have been successfully demonstrated. The device uses only 12 nL of sample, one of the smallest sample volumes demonstrated to date. Minimizing the sample volume allows low power consumption, reduced reagent costs, and ultimately more rapid thermal cycling.  相似文献   

12.
Zhang Y  Park S  Liu K  Tsuan J  Yang S  Wang TH 《Lab on a chip》2011,11(3):398-406
This paper reports a droplet microfluidic, sample-to-answer platform for the detection of disease biomarkers and infectious pathogens using crude biosamples. The platform exploited the dual functionality of silica superparamagnetic particles (SSP) for solid phase extraction of DNA and magnetic actuation. This enabled the integration of sample preparation and genetic analysis within discrete droplets, including the steps of cell lysis, DNA binding, washing, elution, amplification and detection. The microfluidic device was self contained, with all reagents stored in droplets, thereby eliminating the need for fluidic coupling to external reagent reservoirs. The device incorporated unique surface topographic features to assist droplet manipulation. Pairs of micro-elevations were created to form slits that facilitated efficient splitting of SSP from droplets. In addition, a compact sample handling stage, which integrated the magnet manipulator, the droplet microfluidic device and a Peltier thermal cycler, was built for convenient droplet manipulation and real-time detection. The feasibility of the platform was demonstrated by analysing ovarian cancer biomarker Rsf-1 and detecting Escherichia coli with real time polymerase chain reaction and real time helicase dependent amplification.  相似文献   

13.
This work presents a promising clinical molecular diagnostics for early stage lung cancer. This novel diagnostic method utilized the loop-mediated isothermal amplification (LAMP), microfluidic chips and a confocal optical detector with a non-linear fluorescent filter processor. An isothermal amplification based microfluidic chip for the early diagnostics of lung cancer was developed and a confocal optical detector was improved by a novel real-time fluorescent filter to sensitively monitor the DNA amplification procedure with high signal to noise ratio and fluorescence collecting ability. Experiment showed that a rapid diagnostic of lung cancer by detecting the existence of the CEA mRNA could be performed in only 5 μL of reaction assay in less than 45 min. While the traditional in-tube RT-PCR set consumed more than 25 μL of the assay and took more than 90 min.  相似文献   

14.
一种可绝对定量核酸的数字PCR微流控芯片   总被引:2,自引:0,他引:2  
构建了一种新型的可进行核酸单分子扩增和核酸绝对定量的数字聚合酶链式反应(数字PCR)微流控芯片. 应用多层软光刻技术, 以聚二甲基硅氧烷(PDMS)作为芯片材料, 盖玻片作为基底制作了具有3层结构以及微阀控制功能的微流控芯片. 芯片的大小与载玻片相当, 可同时检测4个样品, 每个样品通入芯片后平均分配到640个反应小室, 每个小室的体积为6 nL. 以从肺癌细胞A549中提取的18sRNA为样品检测了该芯片的可行性. 将样品稀释数倍后通入芯片, 核酸分子随机分布在640个小室中并扩增. 核酸分子在芯片中的分布符合泊松分布原理, 当样品中待测核酸分子平均拷贝数低于0.5个/小室时, 则每个反应小室包含0个或1个分子. 经过PCR扩增后, 有模板分子的小室检测结果为阳性反应, 而无模板分子的小室为阴性反应, 最后通过计数阳性反应室的个数, 可绝对定量原始待测样品中的目标DNA分子拷贝数. 实验结果表明, 该数字 PCR芯片可实现DNA单分子反应和核酸绝对定量, 具有成本低、 灵敏度高、 节省时间和试剂以及操作简单等优点, 为数字PCR方法在普通实验室的应用提供了一种新途径, 可用于癌症及感染性疾病的早期诊断、 单细胞分析、 产前诊断以及各种细菌病毒的核酸检验等研究.  相似文献   

15.
Liu C  Mauk MG  Hart R  Qiu X  Bau HH 《Lab on a chip》2011,11(16):2686-2692
A disposable, water-activated, self-heating, easy-to-use, polymeric cartridge for isothermal nucleic acid amplification and visual fluorescent detection of the amplification products is described. The device is self-contained and does not require any special instruments to operate. The cartridge integrates chemical, water-triggered, exothermic heating with temperature regulation facilitated with a phase-change material (PCM) and isothermal nucleic acid amplification. The water flows into the exothermic reactor by wicking through a porous paper. The porous paper's characteristics control the rate of water supply, which in turn controls the rate of exothermic reaction. The PCM material enables the cartridge to maintain a desired temperature independent of ambient temperatures in the range between 20 °C and 40 °C. The utility of the cartridge is demonstrated by amplifying and detecting Escherichia coli DNA with loop mediated isothermal amplification (LAMP). The device can detect consistently as few as 10 target molecules in the sample. With proper modifications, the cartridge also can work with other isothermal nucleic acid amplification technologies for detecting nucleic acids associated with various pathogens borne in blood, saliva, urine, and other body fluids as well as in water and food. The device is suitable for use at home, in the field, and in poor-resource settings, where access to sophisticated laboratories is impractical, unaffordable, or nonexistent.  相似文献   

16.
Nucleic acid amplification is enormously useful to the biotechnology and clinical diagnostic communities; however, to date point-of-use PCR has been hindered by thermal cycling architectures and protocols that do not allow for near-instantaneous results. In this work we demonstrate PCR amplification of synthetic SARS respiratory pathogenic targets and bacterial genomic DNA in less than three minutes in a hardware configuration utilizing convenient sample loading and disposal. Instead of sample miniaturization techniques, near-instantaneous heating and cooling of 5 μL reaction volumes is enabled by convective heat transfer of a thermal fluid through porous media combined with an integrated electrical heater. This method of rapid heat transfer has enabled 30 cycles of PCR amplification to be completed in as little as two minutes and eighteen seconds. Surprisingly, multiple enzymes have been shown to work at these breakthrough speeds on our system. A tool for measuring enzyme kinetics now exists and can allow polymerase optimization through directed evolution studies. Pairing this instrument technology with modified polymerases should result in a new paradigm for high-throughput, ultra-fast PCR and will hopefully improve our ability to quickly respond to the next viral pandemic.  相似文献   

17.
18.
We report a novel compressed air-driven continuous-flow digital PCR (dPCR) system based on a 3D microfluidic chip and self-developed software system to realize real-time monitoring. The system can ensure the steady transmission of droplets in long tubing without an external power source and generate stable droplets of suitable size for dPCR by two needles and a narrowed Teflon tube. The stable thermal cycle required by dPCR can be achieved by using only one constant temperature heater. In addition, our system has realized the real-time detection of droplet fluorescence in each thermal cycle, which makes up for the drawbacks of the end-point detection method used in traditional continuous-flow dPCR. This continuous-flow digital PCR by the compressed air-driven method can meet the requirements of droplet thermal cycle and diagnosis in a clinical-level serum sample. Comparing the detection results of clinical samples (hepatitis B virus serum) with commercial instruments (CFX Connect; Bio Rad, Hercules, CA, USA), the linear correlation reached 0.9995. Because the system greatly simplified the traditional dPCR process, this system is stable and user-friendly.  相似文献   

19.
本文介绍了包括链置换扩增法、滚环扩增法、环介导等温扩增技术以及工具酶法在内的等温信号放大检测方法,并详细阐述了链置换扩增法和环介导等温扩增技术的原理、一种进行三重信号放大的新型滚环扩增策略以及脱氧核糖转移酶催化的新型生物条形码放大技术,并例举了一些以DNA银簇为免标记信号的等温放大检测方法的设计策略,对免标记信号的优点以及DNA银簇的研究价值进行了总结和展望.  相似文献   

20.
林雪霞  王晨境  林金明 《色谱》2020,38(10):1179-1188
人乳头瘤病毒(human papillomavirus,HPV)是一种常见的球形DNA病毒,目前已报道其可以导致6种类型的癌症发生,因此HPV病毒检测方法的研究引起了人们的重视。芯片毛细管电泳(MCE),作为一种芯片实验设备,结合各种信号放大技术为HPV分型检测提供了简单、快速、高灵敏度和易便携化的检测方法。该文综述了MCE在常规HPV分型检测中的最新研究进展,主要分为MCE技术和MCE结合核酸扩增技术两个部分。综述的第一部分介绍了MCE系统、MCE芯片结构设计和电泳分离方法。典型的MCE系统包含了高压电源、分离芯片、电解液池、进样系统、检测系统等。该文还介绍了近年来应用最广泛的4种芯片通道,包括分离直通道、T型通道、蛇形通道以及双通道,并分别对它们的优缺点进行了比较。第二部分主要介绍芯片电泳在HPV检测中的应用和发展。由于MCE技术的应用,HPV目标物的分离时间,从以前的几个小时缩短到几分钟,极大地提高了分离速度。重点介绍了各种核酸扩增技术结合MCE检测HPV的方法。对聚合酶链式反应(PCR)和MCE结合用于HPV的检测技术、环介导等温扩增(LAMP)技术的HPV检测方法、基于PCR结合限制性片段长度多态性(RFLP)技术用于HPV分型的DNA检测、基于核酸序列扩增(NASBA)技术检测HPV mRNA、巢式PCR等进行了比较分析。其次,对HPV其他检测方法进行了总结,其中包括PCR结合傅里叶变换红外光谱法(FT-IR)、纳米技术、DNA探针结合电化学方法、亚铜粒子氧化还原锌掺杂的二硫化钼量子点结合T7外切酶电化学发光法和基于CRISPR/Cas12a的环介导等温扩增法。在这些非MCE方法中,电化学传感法,如阻抗法、脉冲伏安法和流动生物传感器,由于背景信号低、时间控制能力强,是一种比较理想的方法。最后,虽然近年来MCE技术得到了发展,所开发的设备得到了应用,但目前在MCE技术、方法和应用方面仍然存在一些挑战。MCE技术在HPV分型检测应用中面临的第一个挑战是,MCE本身无法对HPV核酸进行信号放大,从而不能在HPV的高灵敏和高选择性分析中得到很好的应用。第二个挑战是,虽然有一些研究者已经成功地将PCR和MCE集成在一个芯片上,但该技术的广泛应用仍面临困难,目前仍然没有真正集成的PCR-MCE芯片用于HPV检测。第三个挑战是目前MCE技术无法实现小型化、自动化器件的制造。最后,文章就MCE在HPV分型检测中开发更自动化、更快速以及更稳定可靠的检测技术提出了一些观点和见解,希望能对感兴趣的读者提供一些启发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号