首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphaerotilus natans is a sheathed bacterium existing in the activated sludge of wastewater treatment plants. IT is one of the filamentous bacteria causing the bulking and foaming difficulties of activated sludge. Isolating the strain and culturing it in an axenic environment could not only provide the metabolic knowledge of the strains that would be useful in the development of wastewater treatment methods, but also could enable us to gain an understanding of the mechanism by which poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (poly[3-HB-co-3-HV]) is produced by this strain. This article reports the screening and isolation of the strain from the activated sludge using the Nile blue staining method together with Fourier transform infrared analysis. We investigated the ability of the selected strain to produce poly(3-HB-co-3-HV) copolymer using glucose and peptone, or by adding valeric acid or sodium propionate as precursor. Proper precursor feeding could dramatically enhance its 3HV content in the copolymer P(3HB-co-3HV). By controlling the different feeding times in fed-batch fermentation, different desired copolymers were obtained with 15, 40, and 70% 3HV mole fraction of the copolymer. Polymer properties were analyzed by gas chromatography, differential scanning calorimetry, thermo-gravimetry, and nuclear magnetic resonance analysis. Open laboratory of Chirotechnology of the Institute of Molecular Technology for Drug Discovery and Synthesis The University Grants Committee Area of Excellence Scheme (Hong Kong).  相似文献   

2.
Poly(3-hydroxybutyrate) [P(3HB)] homopolymer and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymer was produced by Comamonas sp. EB172 using single and mixture of carbon sources. Poly(3-hydroxyvalerate) P(3HV) incorporation in the copolymer was obtained when propionic and valeric acid was used as precursors. Incorporation of 3HV fractions in the copolymer varied from 45 to 86 mol% when initial pH of the medium was regulated. In fed-batch cultivation, organic acids derived from anaerobically treated palm oil mill effluent (POME) were shown to be suitable carbon sources for polyhydroxyalkanoate (PHA) production by Comamonas sp. EB172. Number average molecular weight (Mn) produced by the strain was in the range of 153-412 kDa with polydispersity index (Mw/Mn) in the range of 2.2-2.6, respectively. Incorporation of higher 3HV units improved the thermal stability of P(3HB-co-3HV) copolymer. Thus the newly isolated bacterium Comamonas sp. EB172 is a suitable candidate for PHA production using POME as renewable and alternative cheap raw materials.  相似文献   

3.
A Ralstonia sp. strain JC-64 that is capable of accumulating poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P[3HB-co-3HV]) from cottonseed oil and valeric acid was isolated. By using a high limiting-nitrogen (HLN) mineral medium as the medium for the second stage of the fermentation process and by adding the two carbon sources at different times, a range of copolymers with 12–62 mol% of 3HV were produced from a series of HLN mineral mediums containing different compositions of cottonseed oil and valeric acid by Ralstonia sp. JC-64. The melting temperature (T m ) of polyhydroxybutyrate from cottonseed oil was 174°C and that of P(3HB-co-3HV) with the highest 3HV-mol fraction (62%) was 81°C.  相似文献   

4.
Three different microbial wild-type strains are compared with respect to their potential as industrial scale polyhydroxyalkanoate (PHA) producers from the feed stock whey lactose. The halophilic archaeon Haloferax mediterranei as well as two eubacterial strains (Pseudomonas hydrogenovora and Hydrogenophaga pseudoflava) are investigated. H. mediterranei accumulated 50 wt.-% of poly-3-(hydroxybutyrate-co-8%-hydroxyvalerate) from hydrolyzed whey without addition of 3-hydroxyvalerate (3HV) precursors (specific productivity q(p): 9.1 mg x g(-1) x h(-1)). Using P. hydrogenovora, the final percentage of poly-3-hydroxybutyrate (PHB) amounted to 12 wt.-% (q(p): 2.9 mg x g(-1) x h(-1)). With H. pseudoflava, it was possible to reach 40 wt.-% P-3(HB-co-5%-HV) on non-hydrolyzed whey lactose plus addition of valeric acid as 3HV precursor (q(p): 12.5 mg x g(-1) x h(-1)). A detailed characterization of the isolated biopolyesters and an evaluation with regard to the economic feasibility completes the study.  相似文献   

5.
The biodegradation of poly(3-hydroxybutyrate), P(3HB), and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV) produced by a locally isolated bacteria identified as Erwinia sp. USMI-20 were carried out by using soil burial test and immersion test method at various places under the tropical environment in West Sumatra, Indonesia. The isolation of P(3HA)-degrading microorganisms was done by the in vitro rapid plate test method and was further characterized by using biochemical reactions. Our results showed that P(3HB) biodegraded at a rate of 3.6% per week in activated sludge, 1.9% per week in soil, 1.5% per week in lake water and 0.8% per week in Indian Ocean sea water. The degradation rates for P(3HB-co-3HV) were 17.8% per week in activated sludge, 6.7% per week in soil, 3.2% per week in lake water and 2.7% per week in Indian Ocean sea water. The biodegradation of both polymers were highest after burial into activated sludge with a half-life (T1/2) of 14 weeks and the time for 100% degradation (T100%) of 28 weeks for P(3HB), and a T1/2 of 3 weeks and T100% at 6 weeks for P(3HB-co-3HV). In this study, 10 bacteria which were responsible for the biodegradation of P(3HB) and P(3HB-co-3HV) film were isolated and identified from the various places studied under the tropical environment. They were Bacillus sp. FAAC-2202, Enterobacter sp. FAAC-2207, Bacillus sp. FAAC-2209 and Proteus sp. FAAC-2203 obtained from activated sludge, Bacillus sp. FAAC-2201 and Alcaligenes sp. FAAC-2210 from soil, Alcaligenes sp. FAAC-2205, Micrococcus sp. FAAC-2206 and Pseudomonas sp. FAAC-2208 from lake water and Proteus sp. FAAC-2204 from Indian Ocean sea water.  相似文献   

6.
Polyhydroxyalkanoates, biodegradable plastics with the desired physical and chemical properties of conventional synthetic plastics, are extensively investigated. In this study, specific bacterial strains produced specific copolymers from food waste. Copolymers of HB and HV (poly[3-hydroxybutyrate-co-3-hydroxyvalerate]) were obtained using various ratios of butyric acid (C4) and valeric acid (C5) as carbon sources. The C4 to C5 ratio affected the melting points of the copolymers. Melting and glass transition temperatures and many other thermal properties are important parameters relative to in-service polymer applications. Higher ratios of butyrate to valerate gave higher melting points. When a mixed culture of activated sludge was employed to produce copolymers using food wastes as nutrients, the obtained copolymers showed various monomer compositions. Copolymers with a higher portion of HV were obtained using soy waste; copolymers with less HV were obtained using malt wastes. Pure strains, (i.e., Alcaligenes latus DSM 1122, and DSM 1124, Staphylococcus spp., Klebsiella spp.) produced specific copolymers from food waste. Only Klebsiella spp. produced different copolymers; the ratios of HB:HV were 93:7 and 79:21 from malt waste and soy waste, respectively. The other strains produced polymers of 100% HB. Selecting industrial food wastes as carbon sources can further reduce the cost of producing copolymers. Open Laboratory of Chirotechnology of the Institute of Molecular Technology for Drug Discovery and Synthesis The University Grants Committee Area of Excellence Scheme, Hong Kong  相似文献   

7.
Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV contents (up to about 90 mol%) of PHBV could be produced by this strain. Combined nitrogen sources containing both yeast extract and ammonium sulphate were better for cell growth and polyhydroxyalkanoates (PHA) production than either yeast extract or ammonium sulphate alone. Propionic acid is more favorable for the production of HV content than that of valeric acid. Finally, thermal properties of PHBV produced by this strain are found close to the results of other groups.  相似文献   

8.
Biologically-produced polymers, from microbial fermentation are naturally biodegradable and are potential environment-friendly substitutes for some synthetic plastics. However, broader applications are restricted by the high production costs and limitations in physical and mechanical properties. In this study, activated sludge bacteria in a conventional wastewater treatment system treating a wastewater that contained organic pollutants, were induced by nitrogen deficiency to accumulate intracellular storage polymers, which can be extracted as a low-cost source of biodegradable plastics. Chromatographic analysis of the extracted polymers revealed a composition of poly-hydroxyalkanoate and a number of related co-polymers. Alcaligene spp. in the activated sludge microbial consortium was identified as the main genus accumulated these polymers. When the C:N ratio was increased from 20 to 140, the specific polymer yield increased to a maximum of 0.39 g polymer/g dry cell while specific growth yield decreased to 0.26 g dry cell/g carbonaceous matter consumed. The highest overall polymer production yield of 0.11 g polymer/g carbonaceous matter consumed was achieved when the C:N ratio was maintained at a nitrogen-deficient level of 100. The specific polymer yield in the isolated Alcaligene spp. cells were as high as 0.7 g polymer/g dry cell mass. The composition of the co-polymers, and hence the physical and mechanical properties, could be controlled by manipulating the influent organic compositions.  相似文献   

9.
Polyhydroxyalkanoate (PHA) granules with core-shell layered microstructure were synthesized in Ralstonia eutropha using periodic feeding of valeric acid into a growth medium containing excess fructose. The O2 consumption and CO2 evolution rates, determined by off-gas mass spectrometry, have been used as sensitive measures to indicate the type of nutrients utilized by R. eutropha during PHA synthesis. Domains of poly-3-hydroxybutyrate (PHB) were formed during polymer storage conditions when only fructose was present. Feeding of valeric acid (pentanoic acid) resulted in the synthesis of hydroxyvalerate (HV) monomers, forming a poly-3-hydroxybutyrate-co-valerate (PHBV) copolymer. The synthesis of desired polymer microstructures was monitored and controlled using online mass spectrometry (MS). The respiratory quotient (RQ) was unique to the type of polymer being synthesized due to increased O2 consumption during PHBV synthesis. MS data was used as the control signal for nutrient feeding strategies in the bioreactor. The core-shell structures synthesized were verified in cells using transmission electron microscopy after thin sectioning and staining with RuO4. It was demonstrated that the synthesis of core-shell microstructures can be precisely controlled utilizing a MS feedback control system.  相似文献   

10.
Accumulation of poly hydroxyalkanoate (PHA) from excess activated sludge (EAS) was monitored and controlled via the oxidation-reduction potential (ORP) adjusting process. The ORP was adjusted and controlled by only regulating the gas-flow rate pumped into the cultural broth in which sodium acetate (C2) and propionate (C3) were used as carbon sources. Productivity of PHA and the PHA compositions at various C2 to C3 ratios were also investigated. When ORP was maintained at +30 mV, 35% (w/w) of PHA of cell dry weight obtained when C2 was used as sole carbon source. The PHA copolymer, poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), accumulated by EAS with different 3-hydroxyvalarate (3HV) molar fractions ranged from 8% to 78.0% when C2 and C3 was used as sole carbon source, By using ORP to monitor and control the fermentation process instead DO meter, the ORP system provided more precise control to the PHA accumulation process from EAS under low dissolved oxygen (DO) concentrations. Adjusting the C2 to C3 ratios in the media could control the composition such as the 3HV/3HB ratios of the PHBV. Furthermore, it might be an effective way to adjust the 3HV molar fractions in PHBV by controlling the DO concentration via the ORP monitoring system. The 3HV molar fractions in the PHBV declined with increasing ORP from −30 mV to +100 mV by adjusting the gas-flow rate (i.e. the DO concentration). It is concluded that the DO plays a very important role in the synthesis of 3HV subunits in PHBV co-polymer from the EAS. Therefore, a hypothetic metabolic model for PHA synthesis from EAS was proposed to try to explain the results in this study.  相似文献   

11.
Optimal production of polyhydroxyalkanoates in activated sludge biomass   总被引:3,自引:0,他引:3  
Ma  C. K.  Chua  H.  Yu  P. H. F.  Hong  K. 《Applied biochemistry and biotechnology》2000,84(1-9):981-989
Polyhydroxyalkanoates (PHAs) have been recognized as good candidates for biodegradable plastics, but their high price compared with conventional plastics has limited their use. In this study, actiated sludge microorgan isms from a conventional wastewater treatment process were induced, bycontrol-lingthe carbon: nitrogen (C:N) ratioin the reacorliquor, toaccumulate PHAs. In addition, an intermittent nitrogen feeding program was established to optimize the volumetric PHA productivity in a wastewater treatment process. The optimal overall polymer production yield of 0.111 g of polymer/g of carbonaceous substrate consumed was achieved under a C:N ratio of 96:1 by feeding nitrogen in the reactor liquor onceevery four cycles. At the same time, the amount of excess sludge generated from the wastewater treatment process was reduced by22.9%.  相似文献   

12.
Summary: The potential of three different microbial wild type strains as polyhydroxyalkanoate (PHA) producers from whey lactose is compared. Homopolyester and co-polyester biosynthesis was investigated by the archaeon Haloferax mediterranei and the eubacterial strains Pseudomonas hydrogenovora and Hydrogenophaga pseudoflava. H. mediterranei accumulated 50 wt.-% of poly-3-(hydroxybutyrate-co-6%-hydroxyvalerate) in cell dry mass from hydrolyzed whey without addition of 3-hydroxyvalerate (3HV) precursors (specific productivity qp: 2.9 mg/g h). Using P. hydrogenovora, the final percentage of poly-3-hydroxybutyrate (PHB) amounted to 12 wt.-% (qp: 0.03 g/g h); co-feeding of valeric acid resulted in the production of 12 wt.-%. P-3(HB-co-21%-HV) (qp: 0.02 g/g h). With H. pseudoflava, it was possible to reach 40 wt.-% P-3 (HB-co-5%-HV) on not-hydrolyzed whey lactose plus valeric acid as 3HV precursor (qp: 9.1 mg/g h); on hydrolyzed whey lactose without addition of valeric acid, the strain produced 30 wt.-% of PHB (qp: 0.16 g/g h). The characterization of the isolated biopolyesters completes the study.  相似文献   

13.
The comonomer required, p-maleimidobenzoic acid (MBA) was first prepared in good yield by refinements of published methods. p-Carboxysuccinanilic acid (CSA), and p-succinimidobenzoic acid (SBA), were also prepared to provide models useful for IR and NMR for spectroscopic assignments of the new copolymers. Polymerization of MBA with acrylamide in glacial acetic acid at 60°C gave copolymers with estimated viscosity average molecular weights of 60,000 to 90,000. Yields and viscosity average molecular weights decreased as the MBA to acrylamide monomer feed ratio was increased. The rate of incorporation of MBA into the copolymer rose from 7 to 23% when the mole ratio in the feed was raised from 5 to 20%. Decreasing the initiator concentration increased molecular weights by less than predicted and reduced the yield of copolymer for any given feed ratio of MBA to acrylamide. In all cases about 30–40% of the MBA units in the purified copolymers were hydrolyzed. A change to dimethyl sulfoxide solvent gave good, and poor yields of copolymer at 5 and 10 mol % MBA, respectively, and no copolymer at 20 mol % MBA. Viscosity average molecular weights of the copolymer products prepared in DMSO were somewhat lower than obtained for the copolymers prepared in acetic acid. Polymerization in a DMSO-water mixture gave a negligible yield of polymeric product. Instead, only hydrolysates of MBA precipitated when the coloured polymerization solutions were added to methanol.  相似文献   

14.
The two types of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s [P(3HB-co-3HV)s] were produced by Paracoccus denitrificans ATCC 17741 using two different feeding methods. The produced P(3HB-co-3HV)s were fractionated and the copolymer sequence distributions were analyzed by 1H and 13C NMR spectroscopy. It was found that the P(3HB-co-3HV) samples produced by conventional feeding method were statistically random copolymers. The sequence distributions of P(3HB-co-3HV) samples produced by optimization method were different from random P(3HB-co-3HV)s. The thermal properties and melting behaviors were analyzed by differential scanning calorimetry (DSC). These results demonstrated that P(3HB-co-3HV) samples produced by optimization method are close in nature to P(3HB-co-3HV)s rich in long-sequence of block 3HB units, but less in 3HV random regions. The enzymatic degradation profile of P(3HB-co-3HV) films was investigated in the presence of 3-hydroxybutyrate depolymerase from Pseudomonase lemoignei. The degradation process was observed by monitoring the time-dependent change in the weight loss of copolymer films. The surface erosion of copolymer films was qualitatively monitored by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The highest degradation rate of 2.6% per day was observed for random P(3HB-co-38%3HV) produced by conventional method. In comparison, the hydrolysis degradation rates of random P(3HB-co-3HV)s were about one time faster than those of P(3HB-co-3HV)s produced by optimization method.  相似文献   

15.
Yu  P. H.  Chua  H.  Huang  A. L.  Lo  W.  Chen  G. Q. 《Applied biochemistry and biotechnology》1998,(1):603-614
The usage of plastics in packaging and disposable products, and the generation of plastic waste, have been increasing drastically. Broader usage of biodegradable plastics in packaging and disposable products as a solution to environmental problems would heavily depend on further reduction of costs and the discovery of novel biodegradable plastics with improved properties. In the authors’ laboratories, various carbohydrates in the growth media, including sucrose, lactic acid, butyric acid, valeric acid, and various combinations of butyric and valeric acids, were utilized as the carbon (c) sources for the production of bioplastics byAlcaligenes eutrophus. As the first step in pursuit of eventual usage of industrial food wastewater as nutrients for microorganisms to synthesize bioplastics, the authors investigated the usage of malt wastes from a beer brewery plant as the C sources for the production of bioplastics by microorganisms. Specific polymer production yield by A. Latus DSM 1124 increased to 70% polymer/cell (g/g) and 32g/L cell dry wt, using malt wastes as the C source. The results of these experiments indicated that, with the use of different types of food wastes as the C source, different polyhydroxyal-kanoate copolymers could be produced with distinct polymer properties.  相似文献   

16.
With the objective of developing new biodegradable materials, the miscibility and the crystallinity of blends of poly(3-hydroxybutyrate), P(3HB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), have been studied. P(3HB) (300 kg mol−1)/P(3HB-co-3HV)–10% 3HV (340 kg mol−1) blends were prepared by casting in a wide range of proportions, and characterized by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The experimental values for the glass transition temperatures (Tg) are in good agreement with the values provided by the Fox equation, showing that the blends are miscible. It was observed that the Tg and the melting temperature (Tm) decreases with the increase in the P(3HB-co-3HV)–10% 3HV content, while the crystallization temperature (Tc) increases. FT-IR analyses confirmed the decrease on the crystallinity of P(3HB)/P(3HB-co-3HV)–10% 3HV blends with higher copolymer contents. Bands related to the crystallinity were changed, due to the copolymer content that produced miscible and less crystalline blends.  相似文献   

17.
Poly(β-hydroxyalkanoates) are nature's high molecular weight thermoplastic polyesters. They occur as storage granules in a variety of bacteria. From a plastics, film, and fibres perspective, the statistically random copolyesters based on β-hydroxybutyrate (HB) and β-hydroxyvalerate (HV) repeating units have high potential for commercial exploitation because of their biodegradability. They provide a range of melting points from 180°C down to 80°C and all compositions exhibit high crystallinity due to isodimorphism. The latter is due to the similar crystalline conformations of poly(β-hydroxybutyrate) (PHB) and poly(β-hydroxyvalerate) (PHV). The nascent granules of a 21 mole % HV copolyester sample in freeze-dried bacterial cells were examined by 13C solid-state NMR. A disorder in the HV ethyl side group was noted but backbone carbons for HB and HV units showed evidence of crystalline order which was confirmed by x-ray diffraction. In keeping with the isodimorphous properties of this system, electron diffraction of copolyester single crystals for compositions up to 21 mole % HV confirmed a lattice expansion previously observed for bulk crystallized P(HB-co-HV). Solution or melt crystallized films showed decreasing rates of crystallization with increasing HV content. Homogeneous blends of PHB with P(HB-co-HV) could be formed which showed a single melting peak by differential scanning calorimetry. The potential of P(HB-co-HV) as a source of value-added small molecules is discussed. Depending on the method of degradation (i.e., chemical or pyrolytic) chiral synthons or vinylic small molecules are obtainable in nearly quantitative yields. Because their physical properties resemble those of polyolefins this family of chiral thermoplastics will probably find wide use in biomedical applications where compatibility and absorbability are essential features.  相似文献   

18.
研究了以杂多酸 (盐 )为催化剂 ,合成双季戊四醇六正戊酸单己二酸酯的优化条件 :催化剂为反应物的 0 .8% ,季戊四醇∶己二酸∶正戊酸为1∶0 .3∶0 .5(mol) ,反应在回流温度下进行 3 .0h ,酯的产率在 93 %以上。  相似文献   

19.
以辛酸亚锡为催化剂 ,通过本体开环聚合合成了不同摩尔比的DL 丙交酯 乙交酯 (DL LA GA)共聚物 (PDL LGA) .1 H和1 3C NMR以及DSC结果表明 ,共聚物中GA结构单元的含量略高于按GA投料比计算的结果 ,聚合过程中存在二级酯交换反应 .当聚合温度为 16 0℃时 , GG 序列的平均长度 (lGG)随GA摩尔投料比增大而增长 ,而 LL 序列的平均长度 (lLL)则相反 .研究发现 ,随着GA摩尔投料比降低 , LL 单元的二级酯交换系数 (TⅡ[GLG])下降 ,至GA摩尔投料比达到为 5 0 %时最小 ,而后却逐渐增大 .L LA与GA在同样的条件下聚合 ,TⅡ[GLG]和lGG 都比DL LA与GA聚合的大 .聚合温度升高 ,TⅡ[GLG]增大 ,意味着二级酯交换反应加剧 ,但DL LA GA摩尔投料比较高 (75 2 5 )的共聚物的lGG 值有所下降 ,lLL值变化不大 ,而DL LA GA摩尔投料比较低 (5 0 5 0 )的共聚物的lGG值则变化不大 ,lLL值有所下降 ,说明聚合反应还受共聚单体的投料比和其它因素影响 .升高聚合温度比在较低温度下延长反应时间更有效改变共聚物的链结构 .在一定温度下聚合 ,共聚产物的Tg 随GA摩尔投料比增大而有规律降低和在氯仿中的溶解性下降 ;而DL LA GA摩尔投料比一定时 ,聚合温度对共聚物的Tg 的影响较为复杂 ,这与聚合温度对共聚物的链结构影响较大有关 .  相似文献   

20.
The polyacrylic acid derivative, the copolymer (PABAM) of acrylic acid (AA) and p-benzoic acid acrylamide (BAM) were prepared by polymeric reaction. The coordinate structure of the polymer–Eu3+ complexes was characterized by X-ray photoelectron spectroscopy. The fluorescence intensity of the PABAM–Eu3+ complex was enhanced because of introduction of a BAM unit in the polyacrylic acid and reached a maximum when the mole ratio of AA to BAM was about 1 : 1. The ternary complexes of Eu3+–polymer–1,10-phenanthroline (PRL), or 2,2-bipyridine (BPD) were synthesized. The polymers used were PABAM and polyacrylic acid (PAA). The fluorescence intensity of the polymer–Eu3+ complexes was increased by 5∼21 times owing to the introduction of PRL and BPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号