首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approach is proposed to set up the dispersion equations for surface waves propagating through a periodically laminated piezoelectric medium, with the upper layer being a perfect compressible fluid. The approach is based on the formalism of Hamiltonian periodic systems. The dispersion equations derived are valid for an arbitrary law of variation in properties with periodicity coordinate. The influence of the liquid layer and inhomogeneity of the piezoelectric medium on the dispersion spectra of surface waves is studied__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 3, pp. 55–61, March 2005.  相似文献   

2.
Nonlinear dispersion shallow water equations are derived, which describe propagation of long surface waves on a spherical surface with allowance for rotation of the Earth and mobility of the ocean bottom. Derivation of these equations is based on expanding the solution of hydrodynamic equations on a sphere in small parameters depending on the relative thickness of the water layer and dispersion of surface waves.  相似文献   

3.
A thin liquid sheet present in the shear layer of a compressible gas jet is investigated using an Eulerian approach with mixed-fluid treatment for the governing equations describing the gas–liquid two-phase flow system, where the gas is treated as fully compressible and the liquid as incompressible. The effects of different topological configurations, surface tension, gas pressure and liquid sheet thickness on the flow development of the gas–liquid two-phase flow system have been examined by direct solution of the compressible Navier–Stokes equations using highly accurate numerical schemes. The interface dynamics are captured using volume of fluid and continuum surface force models. The simulations show that the dispersion of the liquid sheet is dominated by vortical structures formed at the jet shear layer due to the Kelvin–Helmholtz instability. The axisymmetric case is less vortical than its planar counterpart that exhibits formation of larger vortical structures and larger liquid dispersion. It has been identified that the vorticity development and the liquid dispersion in a planar configuration are increased at the absence of surface tension, which when present, tends to oppose the development of the Kelvin–Helmholtz instability. An opposite trend was observed for an axisymmetric configuration where surface tension tends to promote the development of vorticity. An increase in vorticity development and liquid dispersion was observed for increased liquid sheet thickness, while a decreasing trend was observed for higher gas pressure. Therefore surface tension, liquid sheet thickness and gas pressure factors all affect the flow vorticity which consequently affects the dispersion of the liquid.   相似文献   

4.
An analytical approach is used to investigate the effects of covering layer thickness on the propagation behavior of Love waves in functionally graded piezoelectric materials (FGPMs) covered with a dielectric layer. The piezoelectric substrate is polarized in the direction perpendicular to the wave propagation plane, and its material parameters change continuously along the thickness direction. The dispersion equations for the existence of Love waves with respect to phase velocity are obtained for electrically open and shorted cases, respectively. A detailed investigation of the effects of the covering dielectric layer thickness on dispersion curve, phase velocity, group velocity, and electromechanical coupling factor is carried out. Numerical results show that for a given FGPM, the covering dielectric layer thickness affects significantly the fundamental mode of Love waves but has only negligible effects on the high-order modes. The changes in phase velocity, group velocity, and electromechanical coupling factor due to the change of gradient coefficient of FGPMs could be approached approximately by changing the thickness of the covering dielectric layer, which imply a potential factor for designing new-type surface wave devices with FGPMs.  相似文献   

5.
The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the NavierStokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.  相似文献   

6.
This paper describes a theory of surface Love waves propagating in a layered elastic waveguide loaded on its surface by a viscous (Newtonian) liquid. An analytical expression for the complex dispersion equation of Love waves has been established. The real and imaginary parts of the complex dispersion equation were separated and resulting system of nonlinear algebraic equations was solved numerically. The influence of the viscosity of liquid on the dispersion curves of phase velocity, the wave attenuation and the distribution of the Love wave amplitude is analyzed numerically. The propagation loss is produced only by the viscosity of liquids. Elastic layered waveguide is assumed to be loss-less. The numerical solutions show the dependence of the phase velocity change, the wave attenuation and the wave amplitude distribution in terms of the liquid viscosity and the wave frequency. The results of the investigations are fundamental and can be applied in the design and development of liquid viscosity sensors and biosensors, in Non-Destructive Testing (NDT) of materials, in geophysics and seismology.  相似文献   

7.
Nonlinear waves in a liquid film on a slightly inclined rigid plane are studied. A mathematical model is reduced to a system of two evolutionary equations for the layer thickness and the local fluid mass flow. In addition to viscous forces, gravity, and surface tension, the pressure difference over the layer thickness, induced by the gravity force projection on the normal to the underlying surface, is also taken into account. Spatially periodic solutions developing with time from small initial disturbances into regular nonlinear waves are considered. A spectral representation of the solution, the Galerkin method with respect to the uniform coordinate, and subsequent numerical calculation of the corresponding dynamic system on large time intervals are employed. Different variants in the space of the three governing parameters are calculated and some basic mechanisms of nonlinear dynamics of the two-dimensional waves are detected. The calculation results are compared with the existing experimental data. It is shown that the theoretical conclusions can be used to interpret and predict experiments.  相似文献   

8.
The flow of a liquid in thin layers is one of the hydrodynamic problems of chemistry and heat engineering. The large surface area of films and their small thickness make it possible to accelerate thermal, diffusive, and chemical processes at the gas-liquid boundary.Theoretical studies of liquid flow in a vertical descending thin layer are presented in [1–4]. In this paper we study ascending wave flows of a liquid in a thin vertical layer in contact with a gas, i.e., flows in the direction opposite the action of the force due to gravity, with account for the action of the gas on the liquid surface. Such motions are encountered when oil is extracted from strata that are saturated with gas. At some distance from the stratum the oil and gas separate: the gas travels at high velocity inside the pipe, occupying a considerable portion of the pipe, and the liquid is displaced toward the pipe walls, forming a thin film. In certain cases a wave-like interface develops between the oil and gas that travels with a velocity greater than that of the liquid but less than the average gas velocity. Similar phenomena are observed in high velocity mass exchangers.We examine the effect of the gas for both laminar and turbulent flow.Studies that neglect the effect of the gas flow on the liquid show that for waves on the film surface whose lengths are considerably longer than the average thickness of the layer, the liquid motion in the film is described by boundary layer equations in which account is taken of the mass force, i.e., the force due to gravity. With some approximation, we can assume that in accounting for the effect of the gas on the liquid the liquid flow is described by these same equations.  相似文献   

9.
The mixture theory is employed to the analysis of surface-wave propagation in a porous medium saturated by two compressible and viscous fluids (liquid and gas). A linear isothermal dynamic model is implemented which takes into account the interaction between the pore fluids and the solid phase of the porous material through viscous dissipation. In such unsaturated cases, the dispersion equations of Rayleigh and Love waves are derived respectively. Two situations for the Love waves are discussed in detail: (a) an elastic layer lying over an unsaturated porous half-space and (b) an unsaturated porous layer lying over an elastic half-space. The wave analysis indicates that, to the three compressional waves discovered in the unsaturated porous medium, there also correspond three Rayleigh wave modes (R1, R2, and R3 waves) propagating along its free surface. The numerical results demonstrate a significant dependence of wave velocities and attenuation coefficients of the Rayleigh and Love waves on the saturation degree, excitation frequency and intrinsic permeability. The cut-off frequency of the high order mode of Love waves is also found to be dependent on the saturation degree.  相似文献   

10.
Milan Hofman 《Wave Motion》1983,5(2):115-124
Gravity waves of small but finite amplitude on the free surface of an electrically conducting liquid are examined. For the waves whose propagation is described by the Korteweg-de Vries equation (in the absence of a magnetic field), equations are derived. In addition to nonlinearity and dispersion, these equations include the influence of applied magnetic fields. As an example, the effect of magnetic damping on a solitary wave is presented.  相似文献   

11.
The instability of a plane liquid film with a uniform transverse temperature gradient under conditions of weightlessness is considered. The surface tension is assumed to depend linearly on the temperature. On the basis of an exact solution of the neutral perturbation problem for a layer with deformable boundaries, the instability domains, the dispersion curves, and the shape of the perturbations are determined. It is shown that on the interval of low Prandtl numbers both thermocapillary waves with predominantly longitudinal flow and capillary waves, supported by the thermocapillary effect, with intense transverse liquid flow can develop on the film.Perm'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 30–36, September–October, 1996.  相似文献   

12.
The paper studies the relationship between the physical characteristics of a cylinder and the properties of normal axisymmetric waves in elastic–liquid waveguides. The cylinder is made of a compliant material in which the velocity of shear waves is less than the sonic velocity in a perfect compressible liquid. The complete system of dynamic elasticity equations and the wave equation are used to describe the wave fields in the elastic cylinder and fluid, respectively. This approach allows obtaining the dispersion characteristics of coupled normal waves in compound waveguides over wide ranges of frequencies and wavelengths. The curves of real, imaginary, and complex wave numbers versus frequency are plotted for specific pairs of waveguide materials. Computations are carried out for a thick-walled cylinder filled with a fluid and immersed in either vacuum or a fluid. It is found out that compliant and rigid materials of the cylinder affect differently the wave interaction process in elastic–liquid waveguides  相似文献   

13.
The existence and behaviour of surface electro-elastic shear horizontal waves in a layered structure consisting of a piezoelectric substrate of crystal class 6, 4, 6mm, or 4mm mechanically bonded at its upper surface to an elastic dielectric layer and bounded by an adjacent dielectric medium is considered when the shear bulk wave velocity in the elastic layer is greater than or equal to that in the substrate. The dispersion equation for the existence of the surface electro-elastic SH waves with respect to the phase velocity is obtained which includes all the above crystal classes i.e. the surface wave problems related to all these classes are presented in a single mathematical model. The investigation of the solutions of the dispersion equation is carried out and all the possible cases of the behaviour of the surface electro-elastic SH wave depending on the electro-mechanical coefficients of the layered structure are revealed.  相似文献   

14.
The properties of harmonic surface waves in a fluid-filled cylinder made of a compliant material are studied. The wave motions are described by a complete system of dynamic equations of elasticity and the equation of motion of a perfect compressible fluid. An asymptotic analysis of the dispersion equation for large wave numbers and a qualitative analysis of the dispersion spectrum show that there are two surface waves in this waveguide system. The first normal wave forms a Stoneley wave on the inside surface with increase in the wave number. The second normal wave forms a Rayleigh wave on the outside surface. The phase velocities of all the other waves tend to the velocity of the shear wave in the cylinder material. The dispersion, kinematic, and energy characteristics of surface waves are analyzed. It is established how the wave localization processes differ in hard and compliant materials of the cylinder __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 4, pp. 72–86, April 2008.  相似文献   

15.
Stability of a Liquid Film Flowing Down an Oscillating Inclined Surface   总被引:3,自引:0,他引:3  
The stability of flow of a liquid film along an inclined plate subject to periodic oscillations under the action of the gravity force is investigated with allowance for the surface tension. An equation of the Orr-Sommerfeld type with time-periodic coefficients is used. A method for determining the eigenvalues of the linear stability problem is developed on the basis of Floquet theory, spectral representation of the variables, and multistep methods of integration of ordinary differential equations. The bifurcation spectrum of the resonance modes is investigated, and the amplification coefficients and phase velocities are calculated for the surface waves, Tollmien-Schlichting waves, and resonance waves. The influence of external parameters, namely, the inclination, the surface tension, and the layer thickness, on the resonance modes and the steady-state flow modes is studied.  相似文献   

16.
The dispersion behavior of the shear horizontal (SH) waves in the coupled structure consisting of a piezomagnetic substrate and an orthorhombic piezoelectric layer is investigated with different cut orientations. The surface of the piezoelectric layer is mechanically free, electrically shorted, or open, while the surface of the piezomagnetic substrate is mechanically free, magnetically open, or shorted. The dispersion relations are derived for four electromagnetic boundary conditions. The dispersion characteristics are graphically illustrated for the layered structure with the PMN-PT layer perfectly bonded on the CoFe2O4 substrate. The effects of the PMN-PT cut orientations, the electromagnetic boundary conditions, and the thickness ratio of the layer to the substrate on the dispersion behavior are analyzed and discussed in detail. The results show that, (i) the effect of the cut orientation on the dispersion curves is very obvious, (ii) the electrical boundary conditions of the PMN-PT layer dominate the propagation feature of the SH waves, and (iii) the thickness ratio has a significant effect on the phase velocity when the wave number is small. The results of the present paper can provide valuable theoretical references to the applications of piezoelectric/piezomagnectic structure in acoustic wave devices.  相似文献   

17.
In this theoretical study, we investigate the propagation of Love waves in a layered structure consisting of two different homogenous piezoelectric materials, an upper layer and a substrate. A functionally graded piezoelectric material (FGPM) buffer layer is in between the upper layer and the substrate. We employ the power series technique to solve the governing differential equations with variable coefficients. The influence of the gradient coefficients of FGPM and the layer thicknesses on the dispersion relations, the electro-mechanical coupling factor, and the stress distributions of Love waves in this structure are investigated. We demonstrate that the low gradient coefficient raises the significant variation of the phase velocity within a certain range of ratios of upper layer thickness to equivalent thickness. The electro-mechanical coupling factor can be increased when the equivalent thickness equals one or two wavelengths, and the discontinuity of the interlaminar stress can be eliminated by the FGPM buffer layer. The theoretical results set guidelines not only for the design of high-performance surface acoustic wave (SAW) devices using the FGPM buffer layer, but also for the measurement of material properties in such FGPM layered structures using Love waves.  相似文献   

18.
The properties of harmonic surface waves in an elastic cylinder made of a rigid material and filled with a fluid are studied. The problem is solved using the dynamic equations of elasticity and the equations of motion of a perfect compressible fluid. It is shown that two surface (Stoneley and Rayleigh) waves exist in this waveguide system. The first normal wave generates a Stoneley wave on the inner surface of the cylinder. If the material is rigid, no normal wave exists to transform into a Rayleigh wave. The Rayleigh wave on the outer surface forms on certain sections of different dispersion curves. The kinematic and energy characteristics of surface waves are analyzed. As the wave number increases, the phase velocities of all normal waves, except the first one, tend to the sonic velocity in the fluid from above __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 9, pp. 48–62, September 2007.  相似文献   

19.
An exact solution is found for magnetoelastic shear waves in an infinite structure consisting of three metallized layers. The core layer is ferrite and the face layers are nonmagnetic dielectrics. The wave process in the layers is described by a linearized system of magnetoelastic equations. The problem posed is reduced to a system of linear algebraic equations. The existence conditions for an undamped solution to this system yield the existence conditions for magnetoelastic bulk waves. The dispersion relations derived are analyzed in detail  相似文献   

20.
非理想界面弹性层/压电柱结构中SH波的传播特性   总被引:1,自引:0,他引:1  
研究了各向同性弹性层与压电柱之间非理想连接时沿周向传播的SH波的频散特性.弹性层表面力学自由;弹性层与压电柱之间应力连续、位移间断.通过求解控制方程,将问题的解用Bessel函数表示,利用界面条件和边界条件得到频散方程,然后对其进行数值求解,分析了界面性态、材料常数和几何尺寸对SH波传播特性的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号