首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the orientational relaxation of the OD-stretch vibration of HDO molecules in concentrated solutions of alkali-halide salts (NaCl, NaI, CsCl and KI) in isotopically diluted water (4% D(2)O in H(2)O), using polarization-resolved femtosecond infrared pump-probe spectroscopy (fs-IR). We were able to distinguish the orientational dynamics of the water molecules solvating the halide ions from the dynamics of the bulk water and the water solvating the cations. We found that the reorientation of the halide-bound molecules shows two strongly different components (2.0 ± 0.3 ps and 9 ± 1 ps), related to a wiggling motion of the OD group hydrogen-bonded to the anion, and rotational diffusion of the molecule over the charged anion surface, respectively. The relative amplitudes of the two components are dependent on the nature of both the anion and cation, and on the concentration. These results show that cations can have a profound effect on the solvation shell dynamics of their counter-ions.  相似文献   

2.
We report vibrational lifetime measurements of the OH stretch vibration of interfacial water in contact with lipid monolayers, using time-resolved vibrational sum frequency (VSF) spectroscopy. The dynamics of water in contact with four different lipids are reported and are characterized by vibrational relaxation rates measured at 3200, 3300, 3400, and 3500 cm(-1). We observe that the water molecules with an OH frequency ranging from 3300 to 3500 cm(-1) all show vibrational relaxation with a time constant of T(1) = 180 ± 35 fs, similar to what is found for bulk water. Water molecules with OH groups near 3200 cm(-1) show distinctly faster relaxation dynamics, with T(1) < 80 fs. We successfully model the data by describing the interfacial water containing two distinct subensembles in which spectral diffusion is, respectively, rapid (3300-3500 cm(-1)) and absent (3200 cm(-1)). We discuss the potential biological implications of the presence of the strongly hydrogen-bonded, rapidly relaxing water molecules at 3200 cm(-1) that are decoupled from the bulk water system.  相似文献   

3.
Fiber-optic evanescent wave infrared spectroscopy was used for the study of water diffusion in Teflon and has provided valuable information about the structure of water in amorphous hydrophobic polymers. Time-dependent absorption measurements were carried out in two spectral ranges: 3000-3800 cm(-1), associated with the O-H stretching mode, and 1620-1670 cm(-1), associated with the H-O-H bending mode of water. The results indicate that the IR spectra could be expressed as a superposition of spectra due to two species of water molecules: strongly and weakly hydrogen-bonded. We suggest that water molecules form clusters with strongly hydrogen-bonded molecules at the cores and with weakly hydrogen-bonded molecules at the external parts of the clusters. A mathematical model, based on a linear diffusion equation with a moving boundary, gave a ratio of 3.5 between the total number of molecules in a cluster and the number of water molecules at the core of the cluster.  相似文献   

4.
The hydrogen-bonded clusters of 2-fluoropyridine with water were studied experimentally in a supersonic free jet and analyzed with molecular orbital calculations. The IR spectra of 2-fluoropyridine-(H2O)(n) (n = 1 to 3) clusters were observed with a fluorescence detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The frequencies of OH stretching vibrations show that water molecules bond to the nitrogen atom of 2-fluoropyridine in the clusters. The hydrogen-bond formation between aromatic CH and O was evidenced in the 1:2 and 1:3 clusters from the experimental and calculated results. The overtone vibrations of the OH bending mode in hydrogen-bonded water molecules appear in the IR spectra, and these frequencies become higher with the increase of the number of water molecules in the clusters. The band structure of the IR spectra in the CH stretching region changes depending on the number of coordinating water molecules.  相似文献   

5.
Binding interactions and Raman spectra of water in hydrogen-bonded anionic complexes have been studied by using the hybrid density functional theory method (B3LYP) and ab initio (MP2) method. In order to explore the influence of hydrogen bond interactions and the anionic effect on the Raman intensities of water, model complexes, such as the negatively charged water clusters ((H2O)n-, n = 2 and 3), the water...halide anions (H2O...X-, X = F, Cl, Br, and I), and the water-metal atom anionic complexes (H2O...M-, M = Cu, Ag, and Au), have been employed in the present calculations. These model complexes contained different types of hydrogen bonds, such as O-H...X-, O-H...M-, O-H...O, and O-H...e-. In particular, the last one is a dipole-bound electron involved in the anionic water clusters. Our results showed that there exists a large enhancement in the off-resonance Raman intensities of both the H-O-H bending mode and the hydrogen-bonded O-H stretching mode, and the enhancement factor is more significant for the former than for the latter. The reasons for these spectral properties can be attributed to the strong polarization effect of the proton acceptors (X-, M-, O, and e-) in these hydrogen-bonded complexes. We proposed that the strong Raman signal of the H-O-H bending mode may be used as a fingerprint to address the local microstructures of water molecules in the chemical and biological systems.  相似文献   

6.
The ultrafast relaxation of the excited O-H stretching vibration is studied by ultrafast infrared-pump/infrared-probe and infrared-pump/Raman-probe spectroscopy. We demonstrate a 200 fs lifetime of the hydrogen-bonded O-H stretching mode in 2-(2'-hydroxy-5'-methyl-phenyl)benzotriazole (TINUVIN P). O-H stretching relaxation occurs through a few major channels that all involve combination and overtone bands of modes with considerable in-plane O-H bending character. In particular, the mode, which contains the largest O-H bending contribution, plays a prominent role for primary processes of intramolecular vibrational energy redistribution. Theoretical calculations of vibrational energy transfer rates based on a Fermi golden rule approach account for the experimental findings.  相似文献   

7.
High signal-to-noise ratio (S/N) Raman spectra of (NH(4))(2)SO(4) droplets deposited on a quartz substrate were obtained from dilute to supersaturated states upon decreasing the relative humidity (RH). When the molar water-to-solute ratio (WSR) decreases from 16.8 to 3.2, the v(1)-SO(4)(2-) band changes very little, that is, showing a red-shift of only about 1 cm(-1) (from 979.9 to 978.8 cm(-1)) and an increase of its full width at half-maximum (fwhm) from 8.3 to 9.8 cm(-1). Other vibration modes such as v(2)- and v(4)-SO(4)(2-) bands appear almost constantly at 452 and 615 cm(-1). Such kind of a spectroscopic characteristic is different from previous observation on other cations, indicating that the interactions between SO(4)(2-) and NH(4)+ in supersaturated states are similar to those between SO(4)(2-) and H(2)O in dilute states. After fitting the Raman spectra with Gaussian functions in the spectral range of 2400-4000 cm(-1), we successfully extracted six components at positions of 2878.7, 3032.1, 3115.0, 3248.9, 3468.4, and 3628.8 cm(-1), respectively. The first three components are assigned to the second overtone of NH(4)+ umbrella bending, the combination band of NH(4)+ umbrella bending and rocking vibrations, and the NH(4)+ symmetric stretching vibration, while the latter three components are from the strongly, weakly, and slightly hydrogen-bonded components of water molecules, respectively. With a decrease of the RH, the proportion of the strongly hydrogen-bonded components increases, while that of the weakly hydrogen-bonded components decreases in the droplets. The coexistence of strongly, weakly, and slightly hydrogen-bonded water molecules must hint at a similar hydrogen-bonding network of NH(4)+, SO(4)(2-), and H(2)O to that of pure liquid water in supersaturated (NH(4))(2)SO(4) droplets.  相似文献   

8.
Here we report a detailed study on spectroscopy, structure, and orientational distribution, as well as orientational motion, of water molecules at the air/water interface, investigated with sum frequency generation vibrational spectroscopy (SFG-VS). Quantitative polarization and experimental configuration analyses of the SFG data in different polarizations with four sets of experimental configurations can shed new light on our present understanding of the air/water interface. Firstly, we concluded that the orientational motion of the interfacial water molecules can only be in a limited angular range, instead of rapidly varying over a broad angular range in the vibrational relaxation time as suggested previously. Secondly, because different vibrational modes of different molecular species at the interface has different symmetry properties, polarization and symmetry analyses of the SFG-VS spectral features can help the assignment of the SFG-VS spectra peaks to different interfacial species. These analyses concluded that the narrow 3693 cm(-1) and broad 3550 cm(-1) peaks belong to C(infinityv) symmetry, while the broad 3250 and 3450 cm(-1) peaks belong to the symmetric stretching modes with C2v symmetry. Thus, the 3693 cm(-1) peak is assigned to the free OH, the 3550 cm(-1) peak is assigned to the singly hydrogen-bonded OH stretching mode, and the 3250 and 3450 cm(-1) peaks are assigned to interfacial water molecules as two hydrogen donors for hydrogen bonding (with C2v symmetry), respectively. Thirdly, analysis of the SFG-VS spectra concluded that the singly hydrogen-bonded water molecules at the air/water interface have their dipole vector directed almost parallel to the interface and is with a very narrow orientational distribution. The doubly hydrogen-bonded donor water molecules have their dipole vector pointing away from the liquid phase.  相似文献   

9.
The vibrational dynamics of isolated water molecules dissolved in the nonpolar organic liquids 1,2-dichloroethane (C(2)H(4)Cl(2)) and d-chloroform (CDCl(3)) have been studied using an IR pump-probe experiment with approximately 2 ps time resolution. Analyzing transient, time, and spectrally resolved data in both the OH bending and the OH stretching region, the anharmonic constants of the bending overtone (v=2) and the bend-stretch combination modes were obtained. Based on this knowledge, the relaxation pathways of single water molecules were disentangled comprehensively, proving that the vibrational energy of H(2)O molecules is relaxing following the scheme OH stretch-->OH bend overtone-->OH bend-->ground state. A lifetime of 4.8+/-0.4 ps is determined for the OH bending mode of H(2)O in 1,2-dichloroethane. For H(2)O in CDCl(3) a numerical analysis based on rate equations suggests a bending overtone lifetime of tau(020)=13+/-5 ps. The work also shows that full 2-dimensional (pump-probe) spectral resolution with access to all vibrational modes of a molecule is required for the comprehensive analysis of vibrational energy relaxation in liquids.  相似文献   

10.
A Wulf  Ralf Ludwig 《Chemphyschem》2006,7(1):266-272
We study the structure and dynamics of hydrogen-bonded complexes of H2O/D2O and dimethyl sulfoxide (DMSO) by infrared spectroscopy, NMR spectroscopy and ab initio calculations. We find that single water molecules occur in two configurations. For one half of the water monomers both OH/OD groups form strong hydrogen bonds to DMSO molecules, whereas for the other half only one of the two OH/OD groups is hydrogen-bonded to a solvent molecule. The H-bond strength between water and DMSO is in the order of that in bulk water. NMR deuteron relaxation rates and calculated deuteron quadrupole coupling constants yield rotational correlation times of water. The molecular reorientation of water monomers in DMSO is two-and-a-half times slower than in bulk water. This result can be explained by local structure behavior.  相似文献   

11.
The attenuated total reflectance-Fourier transform infrared (ATR-FTIR) difference spectra of the dilute aqueous (NH4)2SO4, Na2SO4, MgSO4, ZnSO4, NaClO4, and Mg(ClO4)2 solutions by pure water were obtained at various concentrations. In the difference spectra of aqueous (NH4)2SO4 solutions, a peak at approximately 3039 cm(-1), two shoulders at approximately 3155 and approximately 2894 cm(-1), and a peak at approximately 1445 cm(-1) were ascribed to N-H stretching and bending vibrations, respectively. A small negative peak was resolved at approximately 3660 cm(-1) in the difference spectra of (NH4)2SO4, which is the sole contribution of SO4(2-) either in the O-H stretching or in the O-H bending region. The positive peaks of the difference spectra in the O-H stretching region for Na2SO4, MgSO4, and ZnSO4 systems, which constantly appeared at approximately 3423, approximately 3136, and approximately 3103 cm(-1) respectively, were suggested to be the contribution of the interactions between metal cations (Na+, Mg2+, and Zn2+) and water molecules, especially from the first hydrated layer of the cations. In the region of 800-1200 cm(-1), the normally infrared-prohibited nu1 (SO4(2-)) band was observed as a weak peak at approximately 981 cm(-1) even at very dilute concentrations (0.10 mol dm(-3)) due to the disturbance of the water molecules hydrated with SO4(2-), even though such a feature may increasingly result from associated ions with increasing concentration. The spectra of the water molecules directly influenced by ClO4-, i.e., mostly the first layer of hydrated water, in NaClO4 and Mg(ClO4)2 solutions were obtained by subtracting the corresponding spectra of the same metal sulfate solutions at the same concentrations from the perchlorate solutions. A positive peak at approximately 3583 +/- 6 cm(-1) and a negative peak at approximately 3184 +/- 25 cm(-1) were obtained as the result of the subtraction. The positive peak was attributed to the water molecules weakly hydrogen-bonded with ClO4-, while the negative one to the reduction of water molecules with fully hydrogen-bonded five-molecule tetrahedral nearest neighbor structure on the introduction of ClO4-.  相似文献   

12.
The (1)H and (17)O NMR relaxometric properties of two cationic complexes formed by Gd(III) with a macrocyclic heptadentate triamide ligand, L(1), and its Nmethylated analogue, L(2), have been investigated in aqueous media as a function of pH, temperature and magnetic field strength. The complexes possess two water molecules in their inner coordination sphere for which the rate of exchange has been found to be sensibly faster for the Nmethylated derivative and explained in terms of electronic effects (decrease of the charge density at the metal center) and perturbation of the network of hydrogen-bonded water molecules in the outer hydration sphere. The proton relaxivity shows a marked dependence from pH and decreases of about six units in the pH range 6.5 to 9.0. This has been accounted for by the displacement of the two water molecules by dissolved carbonate which acts as a chelating anion. The formation of ternary complexes with lactate, malonate, citrate, acetate, fluoride and hydrogenphosphate has been monitored by (1)H NMR relaxometric titrations at 20 MHz and pH 6.3 and the value of the affinity constant, K, and of the relaxivity of the adducts could be obtained. Lactate, malonate and citrate interact strongly with the complexes (log K > or =3.7) and coordinate in a bidendate mode by displacing both water molecules. Larger affinity constants have been measured for GdL(2). Acetate, fluoride and hydrogenphosphate form monoaqua ternary complexes which were investigated in detail with regard to their relaxometric properties. The NMR dispersion (NMRD) profiles indicate a large contribution to the relaxivity of the adducts from water molecules belonging to the second hydration shell of the complexes and hydrogen-bonded to the anion. A VT (17)O NMR study has shown a marked increase of the rate of water exchange upon binding which is explained by coordination of the anion in an equatorial site, thus leaving the water molecule in an apical position, more accessible for interactions with the solvent molecules of the second hydration shell which facilitate the exchange process.  相似文献   

13.
周凯  翁莹  侯青青  娄本勇 《应用化学》2019,36(2):230-235
合成了黄连素和染料木素的有机盐水合物[C20H18NO4]+·[C15H9O5]-·2.5H2O·0.5(C2H5OH),并测定了其晶体结构。 解析结果表明,该有机盐水合物属于单斜晶系,P21/c空间群。 染料木素7取代位的羟基失去了质子变成了染料木素阴离子。 羟基阴离子与4'取代位上的羟基形成了O—H••••O-氢键,产生了一维的氢键链状结构。 两个水分子通过氢键作用形成了链状结构,并与染料木素阴离子形成二维的氢键结构。 加热失去水分子后,有机盐水合物变成无定型状态。 在乙醇水溶液中悬浮后,无定型可以转变成结晶的水合物结构。 形成黄连素-染料木素有机盐水合物后,染料木素在水中的溶解度略有增加。  相似文献   

14.
The hydrogen and water molecules are ubiquitous in the Universe. Their mutual collisions drive water masers and other line emission in various astronomical environments, notably molecular clouds and star-forming regions. We report here a full nine-dimensional interaction potential for H2O-H2 calibrated using high-accuracy, explicitly correlated wave functions. All degrees of freedom are included using a systematic procedure transferable to other small molecules of astrophysical or atmospherical relevance. As a first application, we present rate constants for the vibrational relaxation of the upsilon2 bending mode of H2O obtained from quasiclassical trajectory calculations in the temperature range of 500-4000 K. Our high-temperature (T > or = 1500 K) results are found compatible with the single experimental value at 295 K. Our rates are also significantly larger than those currently used in the astrophysical literature and will lead to a thorough reinterpretation of vibrationally excited water emission spectra from space.  相似文献   

15.
Vibrational relaxation cross sections of the H(2)O(upsilon(2) = 1) bending mode by H(2) molecules are calculated on a recent high-accuracy ab initio potential-energy surface using quasiclassical trajectory calculations. The role of molecular rotation is investigated at a collisional energy of 3500 cm(-1) and it is shown that initial rotational excitation significantly enhances the total (rotationally summed) vibrational relaxation cross sections. A strong and complex dependence on the orientation of the water angular momentum is also observed, suggesting the key role played by the asymmetry of water. Despite the intrinsic limitations of classical mechanics, these exploratory results suggest that quantum approximations based on a complete decoupling of rotation and vibration, such as the widely used vibrational close-coupling (rotational) infinite-order-sudden method, would significantly underestimate rovibrationally inelastic cross sections. We also present some rationale for the absence of dynamical chaos in the scattering process.  相似文献   

16.
The crystal structure of a hydrated crystal of bis(squaryl)biphenyl (BSQB*4H2O), in which two squaric acid moieties are connected with a 4,4'-biphenyl unit, was characterized by the presence of a one-dimensional hydrogen-bonded chain composed of BSQB and water molecules. X-ray crystallographic analysis showed that BSQB exists in a dianion form and that, on average, two of the four water molecules are protonated. The enhanced temperature dependence of the thermal parameters of the oxygen atoms of the water molecules suggested dynamic disorder of the water molecules. The solid-state magic angle spinning deuterium NMR spectrum of BSQB*4D2O revealed that deuterons are exchanged between heavy water molecules and oxonium ions with an exchange rate of ca. 700 Hz around 250 K and that deuterons start to migrate in a hydrogen-bonded cluster of water molecules. Ac dielectric measurements were also used to examine the dynamic process in the hydrated crystal. The dielectric permittivity of the crystal dramatically increased above 250 K with a distinct frequency dependence (epsilon' = 4.7 x 10(4) at 340 K and 1 kHz). The frequency dependence of tan delta at 290 K exhibited a maximum at 3.0 kHz, and this maximum shifted to lower frequencies when the temperature of the crystal decreased. These experimental results suggested that in the one-dimensional hydrogen-bonded chain of BSQB*4H2O a proton relay between oxonium ions and water molecules occurred within a cluster of four water molecules and that the relay was transmitted to the adjacent cluster mediated by the modulation of the negative charge distribution of the BSQB dianion. These phenomena were interpreted as the solitonic migration of the charged domain boundaries along the one-dimensional hydrogen-bonded chain.  相似文献   

17.
NMR, Raman spectroscopy and ab initio quantum-chemical calculations have been employed to investigate the role of the hydration water in the inverse temperature transition of elastin-derived biopolymers represented by poly(Gly-Val-Gly-Val-Pro) and poly(Ala-Val-Gly-Val-Pro). Temperature and concentration dependences of the Raman spectra measured for water solutions of polymers and of a low-molecular-weight model have been correlated with the vibrational frequencies calculated at the DFT (B3LYP) and MP2 levels for the peptide segment surrounded by a growing number of water molecules. The results indicate strong hydration before the transition that, in addition to water hydrogen-bonded to amide groups, includes hydrophobic hydration of non-polar groups by a dynamic cluster of several water molecules. According to 1H longitudinal and transverse relaxation of HOD signals in D2O solutions, the number of water molecules motionally correlated with the polymer is about 4 per one amino acid residue.  相似文献   

18.
In an effort to elucidate their structures, mass-selected Cl--(CH4)n (n = 1-10) clusters are probed using infrared spectroscopy in the CH stretch region (2800-3100 cm(-1)). Accompanying ab initio calculations at the MP2/6-311++G(2df,2p) level for the n = 1-3 clusters suggest that methane molecules prefer to attach to the chloride anion by single linear H-bonds and sit adjacent to one another. These conclusions are supported by the agreement between experimental and calculated vibrational band frequencies and intensities. Infrared spectra in the CH stretch region for Cl--(CH4)n clusters containing up to ten CH4 ligands are remarkably simple, each being dominated by a single narrow peak associated with stretching motion of hydrogen-bonded CH groups. The observations are consistent with cluster structures in which at least ten equivalent methane molecules can be accommodated in the first solvation shell about a chloride anion.  相似文献   

19.
The population relaxation of the OH-stretching vibration of HOD diluted in D2O is studied by time-resolved infrared (IR) pump-probe spectroscopy for temperatures of up to 700 K in the density range 12 1 OH stretching transition with a 200 fs laser pulse centered at approximately 3500 cm(-1). Above 400 K these spectra show no indication of spectral diffusion after pump-probe delays of 0.3 ps. Over nearly the entire density range and for sufficiently high temperatures (T > 360 K), the vibrational relaxation rate constant, kr, is strictly proportional to the dielectric constant, epsilon, of water. Together with existing molecular dynamics simulations, this result suggests a simple linear dependence of kr on the number of hydrogen-bonded D2O molecules. It is shown that, for a given temperature, an isolated binary collision model is able to adequately describe the density dependence of vibrational energy relaxation even in hydrogen-bonded fluids. However, dynamic hydrogen bond breakage and formation is a source of spectral diffusion and affects the nature of the measured kr. For sufficiently high temperatures when spectral diffusion is much faster than energy transfer, the experimentally observed decays correspond to ensemble averaged population relaxation rates. In contrast, when spectral diffusion and vibrational relaxation occur on similar time scales, as is the case for ambient conditions, deviations from the linear kr(epsilon) relation occur because the long time decay of the v = 1 population is biased to slower relaxing HOD molecules that are only weakly connected to the hydrogen bond network.  相似文献   

20.
Single crystal X-ray structure determinations of [(n-C5H11)4N]3[H3V10O28].2(CH3)2CO (TAA-acetone), [(n-C5H11)4N]8[H3V10O28]2[H4V10O28].7C4H8O2 (TAA-dioxane), [(n-C5H11)4N]3[H3V10O28] (TAAh) and [(n-C6H13)4N]2[H4V10O28].4C4H8O2 (THA-dioxane) revealed that protonation and hydrogen bond formation of decavanadate anions in their tetraalkylammonium salts are influenced by the nature of the solvent molecules incorporated as guests into the crystals. When crystallized with acetone molecules, the decavanadate anion forms a self-associated hydrogen-bonded dimer of ([H3V10O28](3-))2 to hide the protons from the aprotic protophobic acetone molecules. When crystallized with 1,4-dioxane molecules, the decavanadate anion exposes its protons to the aprotic protophilic 1,4-dioxane molecules to form a hydrogen-bond assisted solvation complex of ((C4H8O2)4...[H4V10O28)](2-)). Size effects of the tetraalkylammonium cations on crystallizing these hydrogen-bonded assemblies were also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号