首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the vibrational relaxation of the H(2)O bending mode in an H(2)O:HDO:D(2)O isotopic mixture using infrared pump-probe spectroscopy. The transient spectrum and its delay dependence reveal an anharmonic shift of 55+/-10 cm(-1) for the H(2)O bending mode, and a value of 400+/-30 fs for its vibrational lifetime.  相似文献   

2.
The vibrational relaxation of the bending mode of HDO in liquid D2O has been studied using time-resolved mid-infrared pump-probe spectroscopy. At short delays, the transient spectrum clearly shows the v = 1 --> 2 induced absorption and v = 1 --> 0 bleaching and stimulated emission, whereas at long delays, the transient spectrum is dominated by the spectral changes caused by the temperature increase in the sample after vibrational relaxation. From the decay of the v = 1 --> 2 induced absorption, we obtain an estimate of 390 +/- 50 fs for the vibrational lifetime, in surprisingly good agreement with recent theoretical predictions. In the v = 0 --> 1 frequency region, the decay of the absorption change involves a second, slower component, which suggests that after vibrational relaxation the system is not yet in thermal equilibrium.  相似文献   

3.
The dynamics of vibrational energy relaxation (VER) of the aqueous azide anion was studied over a wide temperature (300 K ≤ T ≤ 663 K) and density (0.6 g cm(-3) ≤ ρ ≤ 1.0 g cm(-3)) range thereby covering the liquid and the supercritical phase of the water solvent. Femtosecond mid-infrared spectroscopy on the ν(3) band associated with the asymmetric stretching vibration of the azide anion was used to monitor the relaxation dynamics in a time-resolved fashion. The variation of the vibrational relaxation rate constant with temperature and density was found to be rather small. Surprisingly, the simple isolated binary collision model is able to fully reproduce the experimentally observed temperature and density dependence of the relaxation rate provided a local density correction around the vibrationally excited solute based on classical molecular dynamics simulations is used. The simulations further suggest that head-on collisions of the solvent with the terminal nitrogen atoms rather than side-on collisions with the central nitrogen atom of the azide govern the vibrational energy relaxation of this system. Finally, the importance of hydrogen bonding for the VER dynamics in this system is briefly discussed.  相似文献   

4.
A simple, reliable model of the bending mode vibration of the water molecule based on the Morse oscillator is presented. The model yields accurate predictions of the rotation—vibration level structure in the various ν2 bands as well as the geometric structure of the ground state.  相似文献   

5.
6.
7.
We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton.  相似文献   

8.
9.
10.
11.
Infrared and Raman spectroscopy are used in this work to study the metallic complexes of salicylic acid with silver and copper, comparing the interaction between salicylate and the cations (Ag+ and Cu2+) in the metal complexes with the SERS spectra when adsorbed on colloidal metal surfaces of the same metals. The salicylate complexes with the above metals were compared to those of Na+, Fe3+ and Al3+ cations. A different interaction mechanism is deduced for salicylate in the metal complex and when adsorbed on the metal surface.  相似文献   

12.
The well known model potential is used to investigate the vibrational properties of some Ni-based binary glassy alloys using three theoretical models. Different local field correction functions are employed to see the effect of exchange and correlation in the aforesaid properties and have been found successful.  相似文献   

13.
A study of the normal modes of vibration and their dispersion in polyurydilic acid (polyU) is reported using Wilson's GF Matrix method as modified by Higgs. This is done for the `bare' as well as for the helix `loaded' with uracil. Confusion that has prevailed regarding the assignments of the observed modes at 810 and 572 cm−1 is cleared and it is shown that the so called bare helix (polyU-U) has a different minimum energy state and hence spectrally different. Dispersion of the normal modes in the two helices shows marked differences which are characteristic of the extent of electrical/mechanical coupling along the chain and between the chain and the base. Values predicted for the heat capacity as a function of temperature for polyU is also reported.  相似文献   

14.
The distortion of atoms in HeNe and ions in LiF and NaCl is studied by use of non-orthogonal, least distorted, localized molecular orbitals in the restricted Hartree-Fock approximation. We find that the least distortion criterion is effective in producing localized orbitals. In addition we find that point-by-point the localized orbitals differ little from the Hartree-Fock orbitals of the corresponding atoms or ions, although the differences are energetically important. We infer from our calculations that the effective potential which distorts atomic orbitals into localized molecular orbitals must be quite weak.  相似文献   

15.
The vibrational dynamics of water around serine was investigated by using Raman spectroscopy and inelastic incoherent neutron scattering. Experiments with serine in deuterium oxide were performed to assist the assignment. The study shows that for the serine, the exchange of protons-deuterons on the active -NH3+ and -OH groups were relatively easy, whereas there were hardly any exchanged on the -CH or -CH2- groups. The main features of the spectra for hydrated samples (versus the dry samples) were altered considerably; new sharp peaks in the measured spectra appeared, indicating that the hydrogen bonding between water and serine had disturbed the structure of the serine molecule.  相似文献   

16.
We present a first-principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in heavy water without using any empirical model potentials. The calculations are based on ab initio molecular dynamics simulations for trajectory generation and a time series analysis using the wavelet method for frequency calculations. It is found that, in deuterated water, although a one-to-one relation does not exist between the instantaneous frequency of an OD bond and the distance of its associated hydrogen bond, such a relation does hold on average. The dynamics of spectral diffusion is investigated by means of frequency-time correlation and spectral hole dynamics calculations. Both of these functions are found to have a short-time decay with a time scale of approximately 100 fs corresponding to dynamics of intact hydrogen bonds and a slower long-time decay with a time constant of approximately 2 ps corresponding to lifetimes of hydrogen bonds. The connection of the slower time scale to the dynamics of local structural relaxation is also discussed. The dynamics of hydrogen bond making is shown to have a rather fast time scale of approximately 100 fs; hence, it can also contribute to the short-time dynamics of spectral diffusion. A damped oscillation is also found at around 150-200 fs, which is shown to have come from underdamped intermolecular vibrations of a hydrogen-bonded water pair. Such assignments are confirmed by independent calculations of power spectra of intermolecular motion and hydrogen bond kinetics using the population correlation function formalism. The details of the time constants of frequency correlations and spectral shifts are found to depend on the frequencies of chosen OD bonds and are analyzed in terms of the dynamics of hydrogen bonds of varying strengths and also of free non-hydrogen-bonded OD groups.  相似文献   

17.
The spatial and temporal properties of water and ions in bionanoporous materials-protein crystals-have been investigated using molecular dynamics simulations. Three protein crystals are considered systematically with different morphologies and chemical topologies: tetragonal lysozyme, orthorhombic lysozyme, and tetragonal thermolysin. It is found that the thermal fluctuations of C(alpha) atoms in the secondary structures of protein molecules are relatively weak due to hydrogen bonding. The solvent-accessible surface area per residue is nearly identical in the three protein crystals; the hydrophobic and hydrophilic residues in each crystal possess approximately the same solvent-accessible surface area. Water distributes heterogeneously and has different local structures within the biological nanopores of the three protein crystals. The mobility of water and ions in the crystals is enhanced as the porosity increases and also by the fluctuations of protein atoms particularly in the two lysozyme crystals. Anisotropic diffusion is found preferentially along the pore axis, as experimentally observed. The anisotropy of the three crystals increases in the order: tetragonal thermolysin < tetragonal lysozyme < orthorhombic lysozyme.  相似文献   

18.
The well recognized model potential is used to investigate the vibrational properties of four Fe-based binary glassy alloys viz. Fe90Zr10, Fe80B20, Fe83B17 and Fe80P20. The thermodynamic and elastic properties are also computed from the elastic limits of the phonon dispersion curves (PDC). Three theoretical approaches given by Hubbard-Beeby (HB), Takeno-Goda (TG) and Bhatia-Singh (BS) are used in the present study to compute the PDC. Six local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) and Sarkar et al.’s local field factor (SLFF) based excgange and correlation function are employed to see the effect of exchange and correlation in the aforesaid properties.  相似文献   

19.
The Raman linewidths of the carbon-halogen stretching mode in several halobenzenes were measured as a function of temperature and in dilute cyclohexane solution. It was found that, as in an earlier investigation on haloalkanes, the vibrational relaxation efficiencies, τ?1iso, vary in the order Cl > Br > I. The temperature dependence of τiso, together with the results in dilute solution, provide evidence that dipolar interactions play a significant role in vibrational relaxation in these systems.  相似文献   

20.
Experiments are reviewed in which key problems in chemical dynamics are probed by experiments based on photodetachment and/or photoexcitation of negative ions. Examples include transition state spectroscopy of biomolecular reactions, spectroscopy of open shell van der Waals complexes, photodissociation of free radicals, and time-resolved dynamics in clusters. The experimental methods used in these investigations are described along with representative systems that have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号