首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Photoexcitation of spin crossover (SCO) complexes can trigger extensive electronic spin transitions and transformation of molecular structure. However, the precise nature of the associated ultrafast structural dynamics remains elusive, especially in the solid state. Here, we studied a single‐crystal SCO material with femtosecond electron diffraction (FED). The unique capability of FED allows us to directly probe atomic motions and to track ultrafast structural changes within a crystal lattice. By monitoring the time‐dependent changes of the Bragg reflections, we observed the formation of a photoinduced structure similar to the thermally induced high‐spin state. The data and refinement calculations indicate the global structural reorganization within 2.3 ps, as the metal–ligand bond distribution narrows during intramolecular vibrational energy redistribution (IVR) driving the intermolecular rearrangement. Three independent dynamical group are identified to model the structural dynamics upon photoinduced SCO.  相似文献   

2.
In this communication, we report our first study of self-assembled adsorbates on metal surfaces. Specifically, we studied single-crystal clean surfaces of Au(111) with and without a monolayer of reaction involving the assembly of 2-mercaptoacetic acid from 2,2'-dithiodiacetic acid. We also studied monolayers of iron hemes. With ultrafast electron crystallography, we are able to observe and isolate structural dynamics of the substrate (gold) and adsorbate(s) following an ultrafast temperature jump.  相似文献   

3.
A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispheri-cal electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom-eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dy-namics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.  相似文献   

4.
In this perspective we highlight developments and concepts in the field of 4D electron imaging. With spatial and temporal resolutions reaching the picometer and femtosecond, respectively, the field is now embracing ultrafast electron diffraction, crystallography and microscopy. Here, we overview the principles involved in the direct visualization of structural dynamics with applications in chemistry, materials science and biology. The examples include the studies of complex isolated chemical reactions, phase transitions and cellular structures. We conclude with an outlook on the potential of the approach and with some questions that may define new frontiers of research.  相似文献   

5.
The technique of ultrafast electron diffraction allows direct measurement of changes which occur in the molecular structures of isolated molecules upon excitation by femtosecond laser pulses. The vectorial nature of the molecule-radiation interaction also ensures that the orientation of the transient populations created by the laser excitation is not isotropic. Here, we examine the influence on electron diffraction measurements--on the femtosecond and picosecond timescales--of this induced initial anisotropy and subsequent inertial (collision-free) molecular reorientation, accounting for the geometry and dynamics of a laser-induced reaction (dissociation). The orientations of both the residual ground-state population and the excited- or product-state populations evolve in time, with different characteristic rotational dephasing and recurrence times due to differing moments of inertia. This purely orientational evolution imposes a corresponding evolution on the electron scattering pattern, which we show may be similar to evolution due to intrinsic structural changes in the molecule, and thus potentially subject to misinterpretation. The contribution of each internuclear separation is shown to depend on its orientation in the molecular frame relative to the transition dipole for the photoexcitation; thus not only bond lengths, but also bond angles leave a characteristic imprint on the diffraction. Of particular note is the fact that the influence of anisotropy persists at all times, producing distinct differences between the asymptotic "static" diffraction image and the predictions of isotropic diffraction theory.  相似文献   

6.
Polarization dependent time-resolved infrared (TRIR) spectroscopy has proven to be a useful technique to study the structural dynamics in a photochemical process. The angular information of transient species is obtainable in this measurement, which makes it a valuable technique for the investigation of electron distribution, molecular structure, and conformational dynamics. In this review, we briefly introduce the principles and applications of polarization dependent TRIR spectroscopy. We mainly focused on the following topics: (i) an overview of TRIR spectroscopy, (ii) principles of TRIR spectroscopy and its advantages compared to the other ultrafast techniques, (iii) examples that use polarization dependent TRIR spectroscopy to probe a variety of chemical and dynamical phenomena including protein conformational dynamics, excited state electron localization, and photoisomerization, (iv) the limitations and prospects of TRIR spectroscopy.  相似文献   

7.
The reliability of linear polymer structures determined by using electron diffraction data is investigated. The results of n-beam dynamical calculations and kinematic calculations which take account of crystal bending are compared with experimental structure factors for five published structures. In specific cases, both dynamical scattering and crystal bending effects are found to be important. Finally, guidelines are given for obtaining electron diffraction data which are optimal for structure solution.  相似文献   

8.
Information about temporally varying molecular structure during chemical processes is crucial for understanding the mechanism and function of a chemical reaction. Using ultrashort optical pulses to trigger a reaction in solution and using time‐resolved X‐ray diffraction (scattering) to interrogate the structural changes in the molecules, time‐resolved X‐ray liquidography (TRXL) is a direct tool for probing structural dynamics for chemical reactions in solution. TRXL can provide direct structural information that is difficult to extract from ultrafast optical spectroscopy, such as the time dependence of bond lengths and angles of all molecular species including short‐lived intermediates over a wide range of times, from picoseconds to milliseconds. TRXL elegantly complements ultrafast optical spectroscopy because the diffraction signals are sensitive to all chemical species simultaneously and the diffraction signal from each chemical species can be quantitatively calculated from its three‐dimensional atomic coordinates and compared with experimental TRXL data. Since X‐rays scatter from all the atoms in the solution sample, solutes as well as the solvent, the analysis of TRXL data can provide the temporal behavior of the solvent as well as the structural progression of all the solute molecules in all the reaction pathways, thus providing a global picture of the reactions and accurate branching ratios between multiple reaction pathways. The arrangement of the solvent around the solute molecule can also be extracted. This review summarizes recent developments in TRXL, including technical innovations in synchrotron beamlines and theoretical analysis of TRXL data, as well as several examples from simple molecules to an organometallic complex, nanoparticles, and proteins in solution. Future potential applications of TRXL in femtosecond studies and biologically relevant molecules are also briefly mentioned.  相似文献   

9.
We computationally examine various aspects of the reaction dynamics of the photodissociation and recombination of molecular iodine. We use our recently proposed formalism to calculate time-dependent x-ray scattering signal changes from first principles. Different aspects of the dynamics of this prototypical reaction are studied, such as coherent and noncoherent processes, features of structural relaxation that are periodic in time versus nonperiodic dissociative processes, as well as small electron density changes caused by electronic excitation, all with respect to x-ray scattering. We can demonstrate that wide-angle x-ray scattering offers a possibility to study the changes in electron densities in nonperiodic systems, which render it a suitable technique for the investigation of chemical reactions from a structural dynamics point of view.  相似文献   

10.
Mapping out multidimensional potential energy surfaces has been a goal of physical chemistry for decades in the quest to both predict and control chemical reactivity. Recently a new spectroscopic approach called Femtosecond Stimulated Raman Spectroscopy or FSRS was introduced that can structurally interrogate multiple dimensions of a reactive potential energy surface. FSRS is an ultrafast laser technique which provides complete time-resolved, background-free Raman spectra in a few laser shots. The FSRS technique provides simultaneous ultrafast time (~50 fs) and spectral (~8 cm(-1)) resolution, thus enabling one to follow reactive structural evolutions as they occur. In this perspective we summarize how FSRS has been used to follow structural dynamics and provide mechanistic detail on three classical chemical reactions: a structural isomerization, an electron transfer reaction, and a proton transfer reaction.  相似文献   

11.
We report our systematic examination of tryptophan fluorescence dynamics in proteins with femtosecond resolution. Distinct patterns of femtosecond-resolved fluorescence transients from the blue to the red side of emission have been characterized to distinguish local ultrafast solvation and electronic quenching. It is shown that tryptophan is an ideal local optical probe for hydration dynamics and protein-water interactions as well as an excellent local molecular reporter for ultrafast electron transfer in proteins, as demonstrated by a series of biological systems, here in melittin, human serum albumin, and human thioredoxin, and at lipid interfaces. These studies clarify the assignments in the literature about the ultrafast solvation or quenching dynamics of tryptophan in proteins. We also report a new observation of solvation dynamics at far red-side emission when the relaxation of the local environment is slower than 1 ps. These results provide a molecular basis for using tryptophan as a local molecular probe for ultrafast protein dynamics in general.  相似文献   

12.
Ultrafast time-resolved mass spectrometry and structural dynamics experiments on trans-stilbene, cis-stilbene, and azobenzene, with excitation to high-lying electronic states, reveal a rich diversity of photochemical reaction dynamics. All processes are found to be quite unlike the well-known photochemistry on lower electronic surfaces. While in trans-stilbene, excitation at 6 eV induces a phenyl twisting motion, in cis-stilbene it leads to an ultrafast ring-closing to form 4a,4b-dihydrophenanthrene. Azobenzene dissociates on an ultrafast time scale, rather than isomerizing as it does on a lower surface. The photochemical dynamics of the sample molecules proceed along steep potential energy surfaces and conical intersections. Because of that, the dynamics are much faster than vibrational relaxation, the randomizing effects from vibrational energy scrambling are avoided, and excitation-energy specific reaction dynamics results.  相似文献   

13.
The continuous electron beam of conventional scanning electron microscopes (SEM) limits the temporal resolution required for the study of ultrafast dynamics of materials surfaces. Here, we report the development of scanning ultrafast electron microscopy (S-UEM) as a time-resolved method with resolutions in both space and time. The approach is demonstrated in the investigation of the dynamics of semiconducting and metallic materials visualized using secondary-electron images and backscattering electron diffraction patterns. For probing, the electron packet was photogenerated from the sharp field-emitter tip of the microscope with a very low number of electrons in order to suppress space-charge repulsion between electrons and reach the ultrashort temporal resolution, an improvement of orders of magnitude when compared to the traditional beam-blanking method. Moreover, the spatial resolution of SEM is maintained, thus enabling spatiotemporal visualization of surface dynamics following the initiation of change by femtosecond heating or excitation. We discuss capabilities and potential applications of S-UEM in materials and biological science.  相似文献   

14.
We measured the photoelectron spectra and angular distributions of partially aligned N(2), O(2), and CO(2) in the rescattering plateau of above threshold ionization (ATI). The measured ATI electrons have relatively low collision energies (<15 eV). The photoelectron angular distributions (PAD) show clearly species and energy dependence. A simple two-center interference model was not able to consistently retrieve structural properties. We conclude that due to the interplay between the electrons and rescattering potential, the molecular structural information is obscured and cannot be extracted conveniently. However, the sensitivity of the PAD to the scattering potential in laser-induced electron diffraction promises a practical tool for studying electron-ion scattering dynamics.  相似文献   

15.
The role of dynamical flexibility at the active site of a proteolytic enzyme alpha-chymotrypsin (CHT) has been correlated with its catalytic activity. The temperature-dependent efficiency of catalysis reveals a bell-shaped feature with a peak at 37 degrees C, the typical body temperature of homeothermal animals. The overall structural integrity of the enzyme in our experimental temperature range has been confirmed from dynamic light scattering (DLS) and circular dichroism (CD) studies. We have followed the dynamical evolution at the active site of CHT with temperature using picosecond-resolved fluorescence anisotropy of anthraniloyl probe (covalently attached to the serine-195 residue) and a substrate mimic (inhibitor) proflavin. The conformational dynamics at the active site is found to have a distinct connection with the enzyme functionality. The conformational flexibility of the enzyme is also evidenced from the compressibility studies on the enzyme. The site selective fluorescence detected circular dichroism (FDCD) studies reveal that the conformational flexibility of the enzyme has an effect on the structural perturbation at the active site. We have also proposed the possible implications of the dynamics in the associated energetics.  相似文献   

16.
Slow to ultrafast dynamics of liquid acetone at variable temperature was investigated by depolarized Rayleigh and low-frequency Raman scattering spectroscopy, in the region 0-200 cm(-1). A detailed analysis was performed on the spectra and corresponding time responses, and a consistent view of the molecular dynamics of this dipolar solvent was obtained. The effects of temperature on the spectra were interpreted, and distinct dynamical processes identified. At very low frequencies, or long time scales, acetone dynamics is characterized by a slow diffusive reorientation obeying the Stokes-Einstein-Debye hydrodynamic theory only in the limit of subslip boundary conditions. An alternative model based on the microviscosity concept proved to be able to reproduce this correlation time and its temperature dependence. A comparative analysis of collective and single-molecule reorientational times, these latter estimated from intramolecular Raman spectra, led to an orientational correlation parameter g(2) of unity, which denotes a statistical disorder of molecular polarizability tensors. A fast local restructuring process is putatively responsible for an additional contribution at subpicosecond time scales often referred to as intermediate response in other molecular liquids. The high frequency portion of the dynamical susceptibility showed the signature of librational intermolecular motions, giving rise to an ultrafast decay of the time correlation function of polarizability anisotropy. The overall approach, which provided valuable information on dynamics, structure and molecular interactions of neat acetone, will be applied to acetone electrolytic solutions.  相似文献   

17.
A near-relativistic 100-fs MeV electron beam is developed by using a photocathode rf gun for revealing the hidden ultrafast dynamics of intricate molecular and atomic processes in materials through experimentation of ultrafast time-resolved electron diffraction (UED). The transverse and longitudinal dynamics of femtosecond electron beam in the rf gun were studied theoretically by particle simulation. The growths of the emittance, bunch length and energy spread due to the rf and space charge effects were investigated by changing the laser parameters, field gradient and electron charge. The theoretical studies indicate that a 100-fs MeV electron beam with the transverse emittance of 0.1 mm mrad and the relative energy spread of 10−3–10−4 at bunch charge of 0.1–2 pC (106–107 electrons per pulse) is achievable for UED, in which the intensity is three orders of magnitude higher than that produced by the conventional dc or pulsed guns.  相似文献   

18.
This critical review is intended to provide an overview of the state-of-the-art in femtosecond laser technology and recent applications in ultrafast gas phase chemical dynamics. Although "femtochemistry" is not a new subject, there have been some tremendous advances in experimental techniques during the last few years. Time-resolved photoelectron spectroscopy and ultrafast electron diffraction have enabled us to observe molecular dynamics through a wider window. Attosecond laser sources, which have so far only been exploited in atomic physics, have the potential to probe chemical dynamics on an even faster timescale and observe the motions of electrons. Huge progress in pulse shaping and pulse characterisation methodology is paving the way for exciting new advances in the field of coherent control.  相似文献   

19.
In this and the following paper, we describe the ultrafast structural fluctuations and rearrangements of the hydrogen bonding network of water using two-dimensional (2D) infrared spectroscopy. 2D IR spectra covering all the relevant time scales of molecular dynamics of the hydrogen bonding network of water were studied for the OH stretching absorption of HOD in D2O. Time-dependent evolution of the 2D IR line shape serves as a spectroscopic observable that tracks how different hydrogen bonding environments interconvert while changes in spectral intensity result from vibrational relaxation and molecular reorientation of the OH dipole. For waiting times up to the vibrational lifetime of 700 fs, changes in the 2D line shape reflect the spectral evolution of OH oscillators induced by hydrogen bond dynamics. These dynamics, characterized through a set of 2D line shape analysis metrics, show a rapid 60 fs decay, an underdamped oscillation on a 130 fs time scale induced by hydrogen bond stretching, and a long time decay constant of 1.4 ps. 2D surfaces for waiting times larger than 700 fs are dominated by the effects of vibrational relaxation and the thermalization of this excess energy by the solvent bath. Our modeling based on fluctuations with Gaussian statistics is able to reproduce the changes in dispersed pump-probe and 2D IR spectra induced by these relaxation processes, but misses the asymmetry resulting from frequency-dependent spectral diffusion. The dynamical origin of this asymmetry is discussed in the companion paper.  相似文献   

20.
Recent years have witnessed an ever growing interest in theoretically studying chemical processes at surfaces. Apart from the interest in catalysis, electrochemistry, hydrogen economy, green chemistry, atmospheric and interstellar chemistry, theoretical understanding of the molecule–surface chemical bonding and of the microscopic dynamics of adsorption and reaction of adsorbates are of fundamental importance for modeling known processes, understanding new experimental data, predicting new phenomena, controlling reaction pathways. In this work, we review the efforts we have made in the last few years in this exciting field. We first consider the energetics and the structural properties of some adsorbates on metal surfaces, as deduced by converged, first-principles, plane-wave calculations within the slab-supercell approach. These studies comprise water adsorption on Ru(0001), a subject of very intense debate in the past few years, and oxygen adsorption on aluminum, the prototypical example of metal passivation. Next, we address dynamical processes at surfaces with classical and quantum methods. Here the main interest is in hydrogen dynamics on metallic and semi-metallic surfaces, because of its importance for hydrogen storage and interstellar chemistry. Hydrogen sticking is studied with classical and quasi-classical means, with particular emphasis on the relaxation of hot–atoms following dissociative chemisorption. Hot atoms dynamics on metal surfaces is investigated in the reverse, hydrogen recombination process and compared to Eley–Rideal dynamics. Finally, Eley–Rideal, collision-induced desorption, and adsorbate-induced trapping are studied quantum mechanically on a graphite surface, and unexpected quantum effects are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号