首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The body-force-driven migration in a homogeneous suspension of polyelectrolyte molecules or charged flocs in an electrolyte solution is analyzed. The model used for the particle is a porous sphere in which the density of the hydrodynamic frictional segments, and therefore also that of the fixed charges, is constant. The effects of particle interactions are taken into account by employing a unit cell model. The overlap of the electric double layers of adjacent particles is allowed and the relaxation effect in the double layer surrounding each particle is considered. The electrokinetic equations which govern the electrostatic potential profile, the ionic concentration (or electrochemical potential energy) distributions, and the fluid velocity field inside and outside the porous particle in a unit cell are linearized by assuming that the system is only slightly distorted from equilibrium. Using a regular perturbation method, these linearized equations are solved for a symmetrically charged electrolyte with the density of the fixed charges as the small perturbation parameter. An analytical expression for the settling velocity of the charged porous sphere is obtained from a balance among its gravitational, electrostatic, and hydrodynamic forces. A closed-form formula for the sedimentation potential in a suspension of identical charged porous spheres is also derived by using the requirement of zero net electric current. The dependence of the sedimentation velocity and potential of the suspension on the particle volume fraction and other properties of the particle-solution system is found to be quite complicated.  相似文献   

2.
The diffusiophoretic motion of a polyelectrolyte molecule or charged floc in an unbounded solution of a symmetrically charged electrolyte with a uniform prescribed concentration gradient is analytically studied. The model used for the particle is a porous sphere in which the density of the hydrodynamic frictional segments, and therefore also that of the fixed charges, is constant. The electrokinetic equations which govern the electrostatic potential profile, the ionic concentration distributions (or electrochemical potential energies), and the fluid velocity field inside and outside the porous particle are linearized by assuming that the system is only slightly distorted from equilibrium. Using a regular perturbation method, these linearized equations are solved for a charged porous sphere with the density of the fixed charges as the small perturbation parameter. An analytical expression for the diffusiophoretic mobility of the charged porous sphere in closed form is obtained from a balance between its electrostatic and hydrodynamic forces. This expression, which is correct to the second order of the fixed charge density of the particle, is valid for arbitrary values of kappaa and lambdaa, where kappa is the reciprocal of the Debye screening length, lambda is the reciprocal of the length characterizing the extent of flow penetration inside the particle, and a is the particle radius. Our result to the first order of the fixed charge density agrees with the corresponding solution for the electrophoretic mobility obtained in the literature. In general, the diffusiophoretic mobility of a porous particle becomes greater as the hindrance to the diffusive transport of the solute species inside the particle is more significant.  相似文献   

3.
The sedimentation in a homogeneous suspension of charged spherical particles with an arbitrary thickness of the electric double layers is analytically studied. The effects of particle interactions are taken into account by employing a unit cell model. Overlap of the double layers of adjacent particles is allowed, and the polarization effect in the double layer surrounding each particle is considered. The electrokinetic equations that govern the ionic concentration distributions, the electric potential profile, and the fluid flow field in the electrolyte solution in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved for a symmetrically charged electrolyte with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. An analytical expression for the settling velocity of the charged sphere in closed form is obtained from a balance among its gravitational, electrostatic, and hydrodynamic forces. A closed-form formula for the sedimentation potential in a suspension of identical charged spheres is also derived by using the requirement of zero net electric current. Our results demonstrate that the effects of overlapping double layers are quite significant, even for the case of thin double layers. Copyright 2000 Academic Press.  相似文献   

4.
The magnetohydrodynamic (MHD) effects on the translation and rotation of a charged colloidal sphere situated at the center of a spherical cavity filled with an arbitrary electrolyte solution when a constant magnetic field is imposed are analyzed at the quasisteady state. The electric double layers adjacent to the solid surfaces may have an arbitrary thickness relative to the particle and cavity radii. Through the use of a perturbation method to the leading order, the Stokes equations modified with the electric∕Lorentz force term are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution in the fluid phase from solving the linearized Poisson-Boltzmann equation, we obtain explicit formulas for the translational and angular velocities of the colloidal sphere produced by the MHD effects valid for all values of the particle-to-cavity size ratio. For the limiting case of an infinitely large cavity with an uncharged wall, our result reduces to the relevant solution for an unbounded spherical particle available in the literature. The boundary effect on the MHD motion of the spherical particle is a qualitatively and quantitatively sensible function of the parameters a∕b and κa, where a and b are the radii of the particle and cavity, respectively, and κ is the reciprocal of the Debye screening length. In general, the proximity of the cavity wall reduces the MHD migration but intensifies the MHD rotation of the particle.  相似文献   

5.
An analytical study of diffusiophoresis in a homogeneous suspension of identical spherical charge-regulating particles with an arbitrary thickness of the electric double layers in a solution of a symmetrically charged electrolyte with a uniform prescribed concentration gradient is presented. The charge regulation due to association/dissociation reactions of ionogenic functional groups on the particle surface is approximated by a linearized regulation model, which specifies a linear relationship between the surface charge density and the surface potential. The effects of particle-particle electrohydrodynamic interactions are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations that govern the electric potential profile, the ionic concentration distributions, and the fluid flow field in the electrolyte solution surrounding the particle in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a regular perturbation method, these linearized equations are solved with the equilibrium surface charge density (or zeta potential) of the particle as the small perturbation parameter. Closed-form formulas for the diffusiophoretic velocity of the charge-regulating sphere correct to the second order of its surface charge density or zeta potential are derived. Our results indicate that the charge regulation effect on the diffusiophoretic mobility is quite sensitive to the boundary condition for the electric potential specified at the outer surface of the unit cell. For the limiting cases of a very dilute suspension and a very thin or very thick electric double layer, the particle velocity is independent of the charge regulation parameter.  相似文献   

6.
The boundary effect on the sedimentation of a colloidal particle is investigated theoretically by considering a composite sphere, which comprises a rigid core and an ion-penetrable membrane layer, in a spherical cavity. A pseudo-spectral method is adopted to solve the governing electrokinetic equations, and the influences of the key parameters on the sedimentation behavior of a particle are discussed. We show that both the qualitative and quantitative behaviors of a particle are influenced significantly by the presence of the membrane layer. For example, if the membrane layer is either free of fixed charge or positively charged and the surface potential of the rigid core is sufficiently high, the sedimentation velocity has a local minimum and the sedimentation potential has a local maximum as the thickness of the double layer varies. These local extrema are not observed when the membrane layer is negatively charged. If the double layer is thin, the influence of the fixed charge in the membrane layer on the sedimentation potential is inappreciable.  相似文献   

7.
The boundary effect on electrophoresis is investigated by considering a spherical particle at an arbitrary position in a spherical cavity. Our previous analysis is extended to the case where the effect of double-layer polarization can be significant. Also, the effect of a charged boundary, which yields an electroosmotic flow and a pressure gradient, thereby making the problem under consideration more complicated, is investigated. The influences of the level of the surface potential, the thickness of double layer, the relative size of a sphere, and its position in a cavity on the electrophoretic behavior of the sphere are discussed. Some results that are of practical significance are observed. For example, if a positively charged sphere is placed in an uncharged cavity, its mobility may have a local minimum as the thickness of the double layer varies. If an uncharged sphere is placed in a positively charged cavity, the mobility may have a local minimum as the position of the sphere varies. Also, if the size of a sphere is fixed, its mobility may have a local minimum as the size of a cavity varies. These provide useful information for the design of an electrophoresis apparatus.  相似文献   

8.
The influence of a charged boundary on the electrophoretic behavior of an entity in a non-Newtonian fluid is studied by considering a sphere at an arbitrary position in a spherical cavity filled with a Carreau fluid under the conditions of low surface potential and weak applied electric field. The dependence of the mobility of a sphere on its position in a cavity, the size of a cavity, the thickness of a double layer, and the nature of a fluid is investigated. In addition to the fact that the effect of shear-thinning is advantageous to the movement of a sphere, several other interesting results are also observed. For instance, if an uncharged sphere is in a positively charged cavity, where the electroosmotic flow and the induced charge on the sphere surface play a role, the effect of shear-thinning is important only if the thickness of the double layer is either sufficiently thin or sufficiently thick. However, this might not be the case if a positively charged sphere is in an uncharged cavity.  相似文献   

9.
The diffusiophoresis in a homogeneous suspension of identical dielectric spheres with an arbitrary thickness of the electric double layers in a solution of a symmetrically charged electrolyte with a constant imposed concentration gradient is analytically studied. The effects of particle interactions (or particle volume fraction) are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations that govern the ionic concentration distributions, the electrostatic potential profile, and the fluid flow field in the electrolyte solution surrounding the charged sphere in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. Analytical expressions for the diffusiophoretic velocity of the dielectric sphere in closed form correct to the second order of its surface charge density or zeta potential are obtained from a balance between its electrostatic and hydrodynamic forces. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made.  相似文献   

10.
We report a series of lattice-Boltzmann simulations of the sedimentation velocity of charged disks. In these simulations, we explicitly account for the hydrodynamic and electrostatic forces on disks and on their electrical double layer. By comparing our results with those for spheres with equal surface and charge, we can clarify the effect of the particle shape on the sedimentation process. We find that disks and spheres exhibit a different dependence of the sedimentation velocity on the Debye screening length. An analysis of the behavior of highly charged disks (beyond the scope of the linearized Poisson-Boltzmann equation) shows that, in that regime, the charge dependence of the sedimentation velocity of disks and spheres is similar. This suggests that, at high charge, the effective hydrodynamic shape of the disks becomes more spherical.  相似文献   

11.
A charged spherical particle is concentrically positioned in a converging-diverging nanotube filled with an electrolyte solution, resulting in an electric double layer (EDL) forming around the particle's surface. In the presence of an axially applied electric field, the particle electrophoretically migrates along the axis of the nanotube due to the electrostatic and hydrodynamic forces acting on the particle. In contrast to a cylindrical nanotube with a constant cross-sectional area in which the electric field is almost uniform, the presence of a converging-diverging section in a nanotube alters the electric field, perturbs the charge distribution, and induces a pressure gradient and a recirculating flow that affect the electrostatic and hydrodynamic forces acting on both the particle and the fluid. Depending on the magnitude of the surface charge density along the nanotube's wall, the particle's electrophoretic motion may be significantly accelerated as the particle transverses the converging-diverging section. A continuum model consisting of the Nernst-Planck, Poisson, and Navier-Stokes equations for the ionic concentrations, electric potential, and flow field is implemented to compute the particle's velocity as a function of the particle's size, the nanotube's geometry, surface charges, electric field intensity, bulk electrolyte concentration, and the particle's location. When the particle is negatively charged and the wall of the nanotube is uncharged, the particle migrates in the direction opposite to that of the applied electric field and the presence of the converging-diverging section significantly accelerates the particle's motion. This, however, is not always true when the nanotube's wall is charged with the same sign as that of the particle. Once the ratio of the surface charge density of the nanotube's wall to that of the particle exceeds a certain value, the negatively charged particle will not translocate through the tube toward the anode and does not attain the maximum velocity at the throat of the converging-diverging section. One can envision such a device to be a nanofilter that allows molecules with surface charge densities much higher than that of the wall to go through the nanofilter, while preventing molecules with surface charge densities lower than that of the wall from passing through the nanofilter. The induced recirculating flow may be used to enhance mixing and to stretch, fold, and trap molecules in nanofluidic detectors and reactors.  相似文献   

12.
The Poisson-Boltzmann equation is numerically solved for a suspended spherical particle surrounded by a permeable membrane that contains an inhomogeneous distribution of fixed charges. The calculations are carried out using the network simulation method, which makes it possible to solve the problem in the most general case, extending previous results (J.P. Hsu, Y.C. Kuo, J. Membrane Sci. 108 (1995) 107). Approximate analytical expressions for the counterion concentration and the electric potential in the membrane are also presented, together with criteria that determine their ranges of validity. The limiting case of a distribution of fixed charges in the membrane that reduces to a surface charge is also analyzed. It is shown that the solution for this case, considering a vanishingly small radius of the core, reduces to a superposition of solutions corresponding to a charged impermeable particle suspended in an electrolyte solution and to a cavity filled with a charged electrolyte solution.  相似文献   

13.
The hindrance created by the induced electric filed on the sedimentation of a charged colloid in an aqueous media is studied through numerical modeling. The colloid is considered to be hydrophobic, sedimenting under gravity or a centrifugal force (generalized gravity). The deformation of the charge cloud around the colloid induces an electric field, which generates electrical dipole force on the colloid. The sedimentation velocity is governed by the balance of an electric force, hydrodynamic drag, and gravitational force. Governing equations based on the first principle of electrokinetics is solved numerically through a control volume approach. The dependence of the sedimentation velocity on the electrical properties and slip length of the colloid is investigated. The sedimentation velocity of the charged colloid is slower than the corresponding uncharged particle and this deviation magnifies as the charge density as well as particle slip length is increased. An enhanced g-factor creates a size dependency of the charged colloids. The induced sedimentation field is obtained to analyze the electrokinetics. Surface hydrophobicity enhances the sedimentation velocity, which in turn manifests the induced sedimentation field. However, the sedimentation velocity of a charged hydrophobic colloid is lower than the corresponding uncharged hydrophobic particle and this deviation manifests as slip length is increased.  相似文献   

14.
The effect of the presence of a charged boundary on the electrophoretic behavior of a particle is investigated by considering a sphere at an arbitrary position in a spherical cavity under conditions of low surface potential and weak applied electric field. Previous analyses are modified by using a more realistic electrostatic force formula and several interesting results, which are not reported in the literature, are observed. We show that the qualitative behavior of a particle depends largely on its position, its size relative to that of a cavity, and the thickness of the electric double layer. In general, the presence of a cavity has the effect of increasing the conventional hydrodynamic drag on a particle through a nonslip condition on the former. Also, a decrease in the thickness of the double layer surrounding a sphere has the effect of increasing the electrostatic force acting on its surface so that its mobility increases. However, this may not be the case when an uncharged particle in placed in a positively charged cavity, where the electroosmotic flow plays a role; for example, the mobility can exhibit a local maximum and the direction of electrophoresis can change.  相似文献   

15.
16.
The diffusiophoresis of a rigid, nonuniformly charged spherical particle in an electrolyte solution is analyzed theoretically focusing on the influences of the thickness of double layer, the surface charge distribution, the effect of electrophoresis, and the effect of double-layer polarization. We show that the nonuniform charge distribution on the particle surface yields complicated effect of double-layer polarization, leading to interesting diffusiophoretic behaviors. For example, if the sign of the middle part of the particle is different from that of its left- and right-hand parts, then depending upon the charge density and the fraction of the middle part, the particle can move either to the high-concentration side or to the low-concentration side. Both the diffusiophoretic velocity and its direction can be manipulated by the distribution of the surface charge density. In particular, if the electrophoresis effect is significant, then those properties are governed by the averaged surface charge density of the particle. A dipolelike particle, where its left- (right-) hand half is negatively (positively) charged, always migrates toward the low-concentration (left-hand) side, that is, it has a negative diffusiophoretic velocity. In addition, that diffusiophoretic velocity has a negative local minimum as the thickness of double layer varies.  相似文献   

17.
Ren H. Luo  Huan J. Keh 《Electrophoresis》2021,42(21-22):2134-2142
The electrophoresis and electric conduction of a suspension of charged spherical particles in a salt-free solution are analyzed by using a unit cell model. The linearized Poisson-Boltzmann equation (valid for the cases of relatively low surface charge density or high volume fraction of the particles) and Laplace equation are solved for the equilibrium electric potential profile and its perturbation caused by the imposed electric field, respectively, in the fluid containing the counterions only around the particle, and the ionic continuity equation and modified Stokes equations are solved for the electrochemical potential energy and fluid flow fields, respectively. Explicit analytical formulas for the electrophoretic mobility of the particles and effective electric conductivity of the suspension are obtained, and the particle interaction effects on these transport properties are significant and interesting. The scaled zeta potential, electrophoretic mobility, and effective electric conductivity increase monotonically with an increase in the scaled surface charge density of the particles and in general decrease with an increase in the particle volume fraction, keeping each other parameter unchanged. Under the Debye-Hückel approximation, the dependence of the electrophoretic mobility normalized with the surface charge density on the ratio of the particle radius to the Debye screening length and particle volume fraction in a salt-free suspension is same as that in a salt-containing suspension, but the variation of the effective electric conductivity with the particle volume fraction in a salt-free suspension is found to be quite different from that in a suspension containing added electrolyte.  相似文献   

18.
An analytical study is presented for the magnetohydrodynamic (MHD) effects on a translating and rotating colloidal sphere in an arbitrary electrolyte solution prescribed with a general flow field and a uniform magnetic field at a steady state. The electric double layer surrounding the charged particle may have an arbitrary thickness relative to the particle radius. Through the use of a simple perturbation method, the Stokes equations modified with an electric force term, including the Lorentz force contribution, are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution from solving the linearized Poisson-Boltzmann equation, we obtain closed-form formulas for the translational and angular velocities of the spherical particle induced by the MHD effects to the leading order. It is found that the MHD effects on the particle movement associated with the translation and rotation of the particle and the ambient fluid are monotonically increasing functions of κa, where κ is the Debye screening parameter and a is the particle radius. Any pure rotational Stokes flow of the electrolyte solution in the presence of the magnetic field exerts no MHD effect on the particle directly in the case of a very thick double layer (κa→0). The MHD effect caused by the pure straining flow of the electrolyte solution can drive the particle to rotate, but it makes no contribution to the translation of the particle.  相似文献   

19.
The sedimentation of a concentrated spherical dispersion of composite particles, where a particle comprises a rigid core and a membrane layer containing fixed charge, is investigated theoretically. The dispersion is simulated by a unit cell model, and a pseudo-spectral method based on Chebyshev polynomials is adopted to solve the problem numerically. The influences of the thickness of double layer, the concentration of particles, the surface potential of the rigid core of a particle, and the amount of fixed charge in the membrane layer on both the sedimentation potential and the sedimentation velocity are discussed. Several interesting results are observed; for example, depending upon the charged conditions on the rigid core and in the membrane layer of a particle, the sedimentation potential might have both a local maximum and a local minimum and the sedimentation velocity can have a local minimum as the thickness of double layer varies. Also, the sedimentation velocity can have a local maximum as the surface potential varies. We show that the sedimentation potential increases with the concentration of particles. The relation between the sedimentation velocity and the concentration of particles, however, depends upon the thickness of double layer.  相似文献   

20.
Electrokinetic transport of an uncharged nonconducting microsized liquid droplet in a charged hydrogel medium is studied. Dielectric polarization of the liquid drop under the action of an externally imposed electric field induces a non-homogeneous charge density at the droplet surface. The interactions of the induced surface charge of the droplet with the immobile charges of the hydrogel medium generates an electric force to the droplet, which actuates the drop through the charged hydrogel medium. A numerical study based on the first principle of electrokinetics is adopted. Dependence of the droplet velocity on its dielectric permittivity, bulk ionic concentration, and immobile charge density of the gel is analyzed. The surface conduction is significant in presence of charged gel, which creates a concentration polarization. The impact of the counterion saturation in the Debye layer due to the dielectric decrement of the medium is addressed. The modified Nernst–Planck equation for ion transport and the Poisson equation for the electric field is considered to take into account the dielectric polarization. A quadrupolar vortex around the uncharged droplet is observed when the gel medium is considered to be uncharged, which is similar to the induced charge electroosmosis around an uncharged dielectric colloid in free-solution. We find that the induced charge electrokinetic mechanism creates a strong recirculation of liquid within the droplet and the translational velocity of the droplet strongly depends on its size for the dielectric droplet embedded in a charged gel medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号