首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了微波条件下[Rh Cp*Cl2]2(Cp*:五甲基环戊二烯基)催化二芳基膦酰胺与炔烃的C—H活化/环化反应,以中等到较好的收率获得了一系列具有环状结构的含氟膦酰胺衍生物.通过考察溶剂、温度、时间以及碱等因素,筛选了最佳反应条件.对该催化体系进行放大量实验,也获得了良好的结果.在实验基础上,推测了可能的反应机理,并将此方法应用于一种新型含氟代环状膦酰胺二胺单体的制备.  相似文献   

2.
The oxidation of hydroxylamine by [IrCl6]2- has been studied spectrophotometrically in deoxygenated aqueous solutions in the range of pH 4-9 at 25 degrees C. The reaction is catalyzed by Cu2+, Fe2+, and impurities of aquochloroiridium complexes. Oxalate is a very effective inhibitor of catalysis by copper and iron ions. With excess hydroxylamine, the reaction follows pseudo-first-order kinetics, and the stoichiometric ratio (DeltanIr(IV)/Deltanhydroxylamine) is 1.05 at pH 5.9. Over the pH range 4.2-8.8, the empirical rate law is -d[IrCl(6)2-]/dt=k[IrCl6(2-)][NH2OH]tot, with k=k1Ka1/([H+]+Ka1)+k'Ka1/([H+]([H+]+Ka1)), where Ka1 is the dissociation constant of NH3OH+. Least-squares fitting yields k1=(17.05+/-0.47) M-1 s(-1) and k'=(2.59+/-0.09)x10(-6) s(-1) at ionic strength of 0.1 M (adjusted by NaClO4) and 25 degrees C. The kinetic isotope effects (KIE) (kH/kD) for k1 and k' are 4.4 and 9.8, correspondingly. A mechanism is inferred in which k1 corresponds to concerted proton-coupled electron transfer (PCET) and k' corresponds to electron transfer from NH2O-. In this mechanism, the large KIE for k' is due almost entirely to the equilibrium isotope effect for the pKa of NH2OH.  相似文献   

3.
1,8‐Diazabicyclo[5.4.0]undec‐7‐ene (DBU) reacted with benzyl halides in CH2Cl2/H2O 1 : 1 (v/v) to afford a mixture of eleven‐membered cyclic amide 1 and seven‐membered cyclic amide 2 . When the reaction was carried out in EtOH/H2O 1 : 1 (v/v), product 2 was obtained as the major product. 1,5‐Diazabicyclo[4.3.0]non‐5‐ene (DBN) gave the five‐membered cyclic amide 3 as the sole product under the same reaction conditions.  相似文献   

4.
The reaction between CoCl2 x 6H2O and 2-1-(2-thiazolylazo)-p-cresol (TAC) in acetone resulted in six coordinated cobalt(III) complex, [Co(TAC)2]Cl3. Two TAC ligands coordinate with cobalt ion forming four five membered chelate rings. The cobalt ion is octahedrally coordinated by a phenolic oxygen, azo nitrogen and nitrogen in thiazole rings. Three chloride ions are disordered.  相似文献   

5.
The water exchange process on [(CO)(3)Re(H(2)O)(3)](+) (1) was kinetically investigated by (17)O NMR. The acidity dependence of the observed rate constant k(obs) was analyzed with a two pathways model in which k(ex) (k(ex)(298) = (6.3 +/- 0.1) x 10(-3) s(-1)) and k(OH) (k(OH)(298)= 27 +/- 1 s(-1)) denote the water exchange rate constants on 1 and on the monohydroxo species [(CO)(3)Re(I)(H(2)O)(2)(OH)], respectively. The kinetic contribution of the basic form was proved to be significant only at [H(+)] < 3 x 10(-3) M. Above this limiting [H(+)] concentration, kinetic investigations can be unambiguously conducted on the triaqua cation (1). The variable temperature study has led to the determination of the activation parameters Delta H(++)(ex) = 90 +/- 3 kJ mol(-1), Delta S(++)(ex) = +14 +/- 10 J K(-1) mol(-1), the latter being indicative of a dissociative activation mode for the water exchange process. To support this assumption, water substitution reaction on 1 has been followed by (17)O/(1)H/(13)C/(19)F NMR with ligands of various nucleophilicities (TFA, Br(-), CH(3)CN, Hbipy(+), Hphen(+), DMS, TU). With unidentate ligands, except Br(-), the mono-, bi-, and tricomplexes were formed by water substitution. With bidentate ligands, bipy and phen, the chelate complexes [(CO)(3)Re(H(2)O)(bipy)]CF(3)SO(3) (2) and [(CO)(3)Re(H(2)O)(phen)](NO(3))(0.5)(CF(3)SO(3))(0.5).H(2)O (3) were isolated and X-ray characterized. For each ligand, the calculated interchange rate constants k'(i) (2.9 x 10(-3) (TFA) < k'(I) < 41.5 x 10(-3) (TU) s(-1)) were found in the same order as the water exchange rate constant k(ex), the S-donor ligands being slightly more reactive. This result is indicative of I(d) mechanism for water exchange and complex formation, since larger variations of k'(i) are expected for an associatively activated mechanism.  相似文献   

6.
In the title compound, 3β‐(dimethylamino)‐16α‐hydroxy‐14‐methyl‐4‐methylene‐9,19‐cyclo‐5α‐pregnan‐20‐one monohydrate, C25H39NO2·H2O, the pentacyclo steroidal alkaloid is composed of three six‐membered, one five‐membered and one three‐membered ring. The molecular dimensions are as expected. The structure is stabilized by hydrogen bonds involving H and O atoms of water and the alkaloid molecules, with strong N?O [2.829 (7) Å] and O?O [2.790 (6) and 2.949 (7) Å] interactions.  相似文献   

7.
The chemoselective coupling of oxetanes and carbon dioxide to afford functional, heterocyclic organic compounds known as six‐membered cyclic carbonates remains a challenging topic. Here, an effective method for their synthesis relying on the use of Al catalysis is described. The catalytic reactions can be carried out with excellent selectivity for the cyclic carbonate product tolerating various (functional) groups present in the 2‐ and 3‐position(s) of the oxetane ring. The presented methodology is the first general approach towards the formation of six‐membered cyclic carbonates (6MCCs) through oxetane/CO2 coupling chemistry. Apart from a series of substituted six‐membered cyclic carbonates, also the unprecedented room‐temperature coupling of oxetanes and CO2 is disclosed giving, depending on the structural features of the substrate, a variety of five‐ and six‐membered heterocyclic products. A mechanistic rationale is presented for their formation and support for the intermediary presence of a carbonic acid derivative is given. The presented functional carbonates may hold great promise as building blocks in organic synthesis and the development of new, biodegradable polymers.  相似文献   

8.
Dialkylamino substituted cyclic carbaphosphazenes, (R 2 NCN) 2 (NPCl 2 ) were prepared and reacted with the ferrocene derived hydroxymethyl phosphine sulfide FcCH(CH 3 )P(S)(CH 2 OH) 2 after dilithiation to yield a series of new spirocyclic derivatives of cyclic carbaphosphazenes having ferrocenyl pendant groups. To confirm the formation of six membered spirocycles and to compare their spectral features, transesterification reactions of FcCH(CH 3 )P(S)(CH 2 OH) 2 also were carried out with P(NR 2 ) 3 , yielding the six membered heterocycles FcCH 2 P(S)(CH 2 O) 2 PNR 2 (R = Me, Et). The compounds were characterized by 1 H, 31 P, 13 C NMR, mass spectra, and elemental analysis.  相似文献   

9.
Palladium‐catalyzed base‐selective annulation of dibromonaphthalimide to different aryl boronate esters by combined Suzuki–Miyaura cross‐coupling and direct C−H arylation afforded a series of new five‐ and six‐membered ring annulated electron‐poor polycyclic aromatic hydrocarbons. Cesium carbonate (Cs2CO3) as auxiliary base in these C−C coupling cascade reactions led exclusively to six‐membered ring annulation, while the use of organic base diazabicycloundecene (DBU) afforded the corresponding five‐membered ring annulated products. This base‐dependent selective mode of annulation is attributed to different mechanistic pathways directed by the applied base. The selective annulation was revealed by single crystal X‐ray analysis of the respective five‐ and six‐membered ring annulated products. The optical and redox properties of the new polycyclic aromatic dicarboximides were characterized by UV/Vis absorption and fluorescence spectroscopy and cyclic voltammetry.  相似文献   

10.
Eight-ring cyclic polyamides containing pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp) aromatic amino acids recognize predetermined six base pair sites in the minor groove of DNA. Two four-ring polyamide subunits linked by (R)-2,4-diaminobutyric acid [(R)H2Ngamma] residue form hairpin polyamide structures with enhanced DNA binding properties. In hairpin polyamides, substitution of Hp/Py for Py/Py pairs enhances selectivity for T. A base pairs but compromises binding affinity for specific sequences. In an effort to enhance the binding properties of polyamides containing Hp/Py pairings, four eight ring cyclic polyamides were synthesized and analyzed on a DNA restriction fragment containing three 6-bp sites 5'-tAGNNCTt-3', where NN = AA, TA, or AT. Quantitative footprint titration experiments demonstrate that contiguous placement of Hp/Py pairs in cyclo-(gamma-ImPyPyPy-(R)H2Ngamma-ImHpHpPy-) (1) provides a 20-fold increase in affinity for the 5'-tAGAACTt-3' site (Ka = 7.5 x 10(7)M(-1)) relative to ImPyPyPy-(R)H2Ngamma-ImHpHpPy-C3-OH (2). A cyclic polyamide of sequence composition cyclo-(gamma-ImHpPyPy-(R)H2Ngamma-ImHpPyPy-) (3) binds a 5'-tAGTACTt-3' site with an equilibrium association constant KA= 3.2 x 10(9)M(-1), representing a fivefold increase relative to the hairpin analogue ImHpPyPy-(R)H2Ngamma-ImHpPyPy-C3-OH (4). Arrangement of Hp/Py pairs in a 3'-stagger regulates specificity of cyclo-(gamma-ImPyHpPy-(R)H2Ngamma-ImPyHpPy-) (5) for the 5'-tAGATCTt-3' site (Ka = 7.5 x 10(7)M(-1)) threefold increase in affinity relative to the hairpin analogue ImPyHpPy-(R)H2Ngamma-ImPyHpPy-C3-OH (6), respectively. This study identifies cyclic polyamides as a viable motif for restoring recognition properties of polyamides containing Hp/Py pairs.  相似文献   

11.
The reaction of N,N′‐di(2‐pyridyl)formamidine (HDpyF) with MnCl2‐4H2O afforded the complex MnCl2(HDpyF), which was characterized by X‐ray crystallography. The HDpyF ligand chelates to the Mn(II) center through the first and the third nitrogen atoms to form a six‐membered ring, leaving the second and the fourth nitrogen atoms uncoordinated. The HDpyF ligand is crystallographically disordered such that two different molecules can be solved. The neutral HDpyF ligand adopts the new s‐cis‐syn‐s‐trans conformation.  相似文献   

12.
The asymmetric unit of the title compound, C22H31N3O4·H2O, incorporates one water mol­ecule, which is hydrogen bonded to the 3‐oxo O atom of the indolizidinone system. The two rings of the peptidomimetic mol­ecule are trans‐fused, with the six‐membered ring having a slightly distorted half‐chair conformation and the five‐membered ring having a perfect envelope conformation. The structure is stabilized by intermolecular O—H?O interactions between the water and adjacent peptide mol­ecules, and by N—H?O interactions between the peptide mol­ecules, which link the mol­ecules into infinite chains.  相似文献   

13.

The 1,3‐dipolar cycloaddition of unsaturated Dthreo‐hexaldonolactone 3 and a six‐membered cyclic nitrone 11 led to a single adduct 15, which could be transformed into (1S, 2S, 3S, 9aS)‐2,3‐dihydroxy‐1‐hydroxymethyl‐quinolizidine 28 related to epilupinine via a reaction sequence involving rearrangement of the six‐membered lactone ring into a five‐membered one, removal of the terminal carbon atom from the sugar chain, cleavage of the N‐O bond, and the intramolecular alkylation of the nitrogen atom.   相似文献   

14.
The reaction of six‐ and five‐membered cyclic carbonates, 5‐(2‐propenyl)‐1,3‐dioxan‐2‐one ( 1 ) and 4‐(3‐butenyl)‐1,3‐dioxolan‐2‐one ( 2 ) with hexylamine and benzylamine was carried out in N,N‐dimethylacetamide at 30, 50, and 70 °C. The six‐membered cyclic carbonate 1 proceeded quantitatively with hexylamine at 30 °C for 24 h, while the five‐membered cyclic carbonate 2 converted in 34%. The reaction rate constants at 50 °C are evaluated as follows; 1.42 L/mol · h ( 1 with hexylamine) > 0.29 L/mol · h ( 1 with benzylamine) > 0.04 L/mol · h ( 2 with hexylamine) > 0.01 L/mol · h ( 2 with benzylamine). The activation energies in the reactions of 1 and 2 with hexylamine were estimated to be 10.1 and 24.6 kJ/mol, respectively. The ring‐strain energy was calculated by the semi‐empirical method using the PM3 Hamiltonian. The ring‐strain energy of the six‐membered cyclic carbonate was 2.86 kcal/mol larger than that of five‐membered one. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 162–168, 2001  相似文献   

15.
On the basis of the mechanistic insight that more than one Lewis basic moiety (phosphoramide) is involved in the rate- and stereochemistry-determining step of enantioselective allylation, bidentate chiral phosphoramides were developed. Different chiral phosphoramide moieties were connected by tethers of methylene chains of varying length. The rate and enantioselectivity of allylation with allyltrichlorosilane promoted by the bidentate phosphoramides was found to be highly dependent on the tether length. A new phosphoramide based on a 2,2'-bispyrrolidine skeleton has been designed and afforded good yield, efficient turnover, and high enantioselectivity in allylation reactions. The synthesis of enantiopure 2,2'-bispyrrolidine was easily accomplished on large scale by photodimerization of pyrrolidine followed by resolution with L(or D)-tartaric acid. The scope of the allylation reaction was examined with variously substituted allylic trichlorosilanes and unsaturated aldehydes. This method has been applied to the construction of stereogenic, quaternary centers by the addition of unsymmetrically gamma-disubstituted allylic trichlorosilanes.  相似文献   

16.
The iodate reduction by hydrogen peroxide in acidic solutions is part of the Bray-Liebhafsky and Briggs-Rauscher oscillating reactions. At low hydrogen peroxide concentrations, typical of the Bray-Liebhafsky reaction, its rate law is -d[IO(-)(3)]/dt = (k'(R) + k"(R)[H(+)])[IO(-)(3)][H(2)O(2)] with k'(R) = 1.3 × 10(-7)(20°), 7.8 × 10(-7) (39°), 1.4 × 10(-5) M(-1) s(-1) (60°) and k"(R) = 1.5 × 10(-5) (25°), 6.2 × 10(-5) (39°), 6.3 × 10(-4) M(-2) s(-1) (60°). It is explained by a non-radical mechanism. At high hydrogen peroxide concentrations, typical of the Briggs-Rauscher reaction, a new reaction pathway appears with a rate more than proportional to [H(2)O(2)](2) and nearly independent of [IO(3)(-)] > 0.01 M. This pathway is inhibited by scavengers of free radicals. We suggest that it has a radical mechanism starting with IOH + H(2)O(2)? IOOH + H(2)O and IOOH+H(2)O(2)→ IO˙ + H(2)O+HOO˙.  相似文献   

17.
Crystallization of the title compound, C8H8N4O2, results in the formation of one‐dimensional chains of imidazole (im) mol­ecules linked together by strong hydrogen bonds. The O⋯N(im) separation and O—H(⋯N) distance are 2.6906 (17) and 1.74 (2) Å, respectively, and the O—H⋯N angle is 173 (2)°. The one‐dimensional chains are weakly π stacked along the b axis, with centroid‐to‐centroid separations of 3.678 (2) Å between five‐ and six‐membered rings and 3.963 (2) Å between six‐membered rings. Each mol­ecule is arranged around an inversion center.  相似文献   

18.
The geometries, stabilities, and antioxidant activities of L‐Ascorbic acid (1a), D‐erythroascorbate (2a), and D‐erythroascorbate glucoside (3a) as well as their sulfur and selenium derivatives are systematically investigated by using density functional theory. Emphasis is placed on studies of the two main mechanisms, that is, hydrogen atom donation and single‐electron transfer, and the O—H bond dissociation enthalpy and the ionization potential are computed in the gas phase and water solution. The calculated results indicate that the 2‐OH group in the five‐membered ring acts as an important H atom donor to free radicals. The 2‐OH radical spin density distribution shows that the unpaired electron is mostly located at the C3 atom of the five‐membered ring and partially at the vicinal O atoms, proving that a certain delocalization of the odd electron is effective in the five‐membered ring. In water aqueous solution, the antioxidant capacity and the electron donating ability are increased as the O atom in the five‐membered ring of 1a, 2a, and 3a is replaced by S and Se, respectively, in good agreement with experimental measurements; Furthermore, their antioxidant capacities are enhanced as compared with the standard antioxidant (resveratrol). © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Gold(I)‐chloride‐catalyzed synthesis of α‐sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols showed a wide substrate scope with respect to both propargylic alcohols and aryl thiols. Primary and secondary aromatic propargylic alcohols generated α‐sulfenylated aldehydes and ketones in 60–97 % yield. Secondary aliphatic propargylic alcohols generated α‐sulfenylated ketones in yields of 47–71 %. Different gold sources and ligand effects were studied, and it was shown that gold(I) chloride gave the highest product yields. Experimental and theoretical studies demonstrated that the reaction proceeds in two separate steps. A sulfenylated allylic alcohol, generated by initial regioselective attack of the aryl thiol on the triple bond of the propargylic alcohol, was isolated, evaluated, and found to be an intermediate in the reaction. Deuterium labeling experiments showed that the protons from the propargylic alcohol and aryl thiol were transferred to the 3‐position, and that the hydride from the alcohol was transferred to the 2‐position of the product. Density functional theory (DFT) calculations showed that the observed regioselectivity of the aryl thiol attack towards the 2‐position of propargylic alcohol was determined by a low‐energy, five‐membered cyclic protodeauration transition state instead of the strained, four‐membered cyclic transition state found for attack at the 3‐position. Experimental data and DFT calculations supported that the second step of the reaction is initiated by protonation of the double bond of the sulfenylated allylic alcohol with a proton donor coordinated to gold(I) chloride. This in turn allows for a 1,2‐hydride shift, generating the final product of the reaction.  相似文献   

20.
For the first time, the discrimination of different chiral forms of 1:1 complexes with hydrogen peroxide and methyl hydroperoxide have been investigated using density functional theory (DFT) and Møller–Plesset type 2 (MP2) methods at varied basis set levels from 6‐31+G(d,p) to 6‐31++G(2d,2p). Three pairs of chiral enantiomers were considered. The optimized geometric parameters, interaction energies, and chirodiastatic energies for various isomers at different levels are estimated. To take into account the water solvation effect, the polarized continuum model (PCM) method has been used to evaluate the ΔGsolv. The gas phase results show that the heterochiral six‐membered ring complex (structure I) and homochiral five‐membered ring complexes (structures IV and V) are preferred configurations for the three pairs of chiral enantiomers. The solvation effect on six‐membered ring complexes (structures I and II) shows nonsignificant changes in the configurations preferred, but on five‐membered ring complexes, the homo‐/heterochiral preference is found to be inverse in the polar solvent. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号