首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a dynamical system given by an area-preserving map on a two-dimensional phase plane and consider a one-dimensional line of initial conditions within this plane. We record the number of iterates it takes a trajectory to escape from a bounded region of the plane as a function along the line of initial conditions, forming an "escape-time plot." For a chaotic system, this plot is in general not a smooth function, but rather has many singularities at which the escape time is infinite; these singularities form a complicated fractal set. In this article we prove the existence of regular repeated sequences, called "epistrophes," which occur at all levels of resolution within the escape-time plot. (The word "epistrophe" comes from rhetoric and means "a repeated ending following a variable beginning.") The epistrophes give the escape-time plot a certain self-similarity, called "epistrophic" self-similarity, which need not imply either strict or asymptotic self-similarity.  相似文献   

2.
Recent developments in quantum set theory are used to formulate a program for quantum topological physics. The world is represented in a Hilbert space whose psi vectors represent abstract complexes generated from the null set by one bracket operator and the usual Grassmann (or Clifford) product. Such a theory may be more basic than field theory, in that it may generate its own natural topology, time, kinematics and dynamics, without benefit of an absolute timespace dimension, topology, or Hamiltonian. For example there is a natural expression for the quantum gravitational field in terms of quantum topological operators. In such a theory the usual spectrum of possible dimensions describes only one of an indefinite hierarchy of levels, each with a similar spectrum, describing nonspatial infrastructure. While c simplices have no continuous symmetry, the q simplex has an orthogonal group 0(m, n). Because quantum theory cannot take the universe as physical system, we propose a third relativity:The division between observer and observed is arbitrary. Then it is wrong to ask for the topology and dynamics of a system, in the same sense that it is wrong to ask for the the psi vectors of a system; topology and dynamics, like psi vectors, are not absolute but relative to the observer.  相似文献   

3.
R. Rennie 《物理学进展》2013,62(6):617-779
Geometrical and topological aspects of chiral anomalies in gauge theories are reviewed. Geometrical and topological concepts and results for chiral anomalies in gauge theories are considered, including differential forms, Lie groups, homotopy, homology, cohomology, Riemannian manifolds, fibre bundles, characteristic classes, index theorems and spectral flow. Gauge theories and their formulation in terms of differential forms and fibre bundles are described. The quantisation of gauge theories is performed using path integrals, and the orbit space, BRST symmetries and ? vacuum are discussed. Gauge theories with fermions are formulated, including realistic models of strong and weak interactions. Chiral anomalies and related issues such as the existence of Schwinger terms, their origins in terms of differential forms, cohomology, the orbit space, BRST identities, Hamiltonian systems and relations to index theorems are analysed. Constraints on models for particle physics from chiral anomalies and theories involving spontaneously broken chiral symmetry described by effective Lagrangians are also mentioned.  相似文献   

4.
Conclusion  After reviewing in some detail the notion of non-Euclidean lattices, whose domain of physical realization lies mostly in the novel carbon structures of the family offullerenes, we have discussed a number of physical problems denned over such lattices. We have shown that the group-theoretical definition of these lattices leads to “designing” new tubular regular structures, endowed with symmetries unheard of in the frame of customary crystallography, which combine features of extreme complexity and, at the same time, of great regularity. We have compared the role of the non-Abelian symmetries which these super-lattices are characterized by, with that of (discrete) harmonic (Fourier) lattice symmetry typical of customary crystallographic lattices. Many novel features enter into play, due to thenon-flatness of the related lattice geometry, which led us to a novel—sometimes unexpected—insight into the dynamical and/or thermodynamical properties of various physical systems which have these lattices as ambient space. We have analyzed how lattice topology bears on the complex combinatorics (related to loop-counting) of the classical Ising model. These lattices, even though finite, are, of course, much closer to being three-dimensional than regular 2D lattices simply equipped with periodic boundary conditions. We have shown, on the other hand, how the relation between the lattice symmetry (for example, in the case of fullerene, the discrete subgroup ofSU(2) that we have denotedg 60 and the symmetry proper to the Hamiltonian of quantum systems of many itinerant interacting electrons (Hubbard-like models) allows us to reduce the calculation of the system spectral properties to a “size” that can be dealt with numerically with present-day numerical exact diagonalization techniques much more easily than a regular 3D cluster with a quite smaller number of sites.  相似文献   

5.
The nature and uses of self-similarity in general relativity are discussed. A spacetime may be self-similar (homothetic) along surfaces of any dimensionality, from 1 to 4. A geometric construction is given for all self-similar spacetimes. As an important special case, the spatially self-similar cosmological models are introduced, and their dynamical properties are studied in some detail: The initial-value problem is posed, the ADM formulation is established (when applicable), and it is shown that the evolution equations preserve a self-similarity of initial data. The existence of a conserved quantity is deduced from self-similarity. Possible applications to cosmology and singularities are mentioned. Supported in part by the National Science Foundation [GP-36687X].  相似文献   

6.
Fluctuation-driven dynamics of the internet topology   总被引:1,自引:0,他引:1  
We study the dynamics of the Internet topology based on empirical data on the level of the autonomous systems. It is found that the fluctuations occurring in the stochastic process of connecting and disconnecting edges are important features of the Internet dynamics. The network's overall growth can be described approximately by a single characteristic degree growth rate g(eff) approximately 0.016 and the fluctuation strength sigma(eff) approximately 0.14, together with the vertex growth rate alpha approximately 0.029. A stochastic model which incorporates these values and an adaptation rule newly introduced reproduces several features of the real Internet topology such as the correlations between the degrees of different vertices.  相似文献   

7.
8.
We study phase ordering on networks and we establish a relation between the exponent a(x) of the aging part of the integrated auto-response function and the topology of the underlying structures. We show that a(x) > 0 in full generality on networks which are above the lower critical dimension d(L), i.e., where the corresponding statistical model has a phase transition at finite temperature. For discrete symmetry models on finite ramified structures with T(c) = 0, which are at the lower critical dimension d(L), we show that a(x) is expected to vanish. We provide numerical results for the physically interesting case of the 2 - d percolation cluster at or above the percolation threshold, i.e., at or above d(L), and for other networks, showing that the value of a(x) changes according to our hypothesis. For O(N) models we find that the same picture holds in the large-N limit and that a(x) only depends on the spectral dimension of the network.  相似文献   

9.
The following point of view is geometrically formulated and its consequences examined: the lattice of a crystalline body with a continuous distribution of dislocations can be locally described as an ideal lattice in non-Euclidean space. The types of distribution of dislocations are described by the classification of three-dimensional real Lie algebras. The influence of point defects and the elastic deformation field on the geometry of the material structure of a crystalline body with dislocations is examined. The case where a crystal with dislocations reacts as a body with internal rotational degrees of freedom is discussed.  相似文献   

10.
《Comptes Rendus Physique》2018,19(6):451-483
In this review, we provide an introduction to and an overview of some more recent advances in real-time dynamics of quantum impurity models and their realizations in quantum devices. We focus on the Ohmic spin–boson and related models, which describe a single spin-1/2 coupled with an infinite collection of harmonic oscillators. The topics are largely drawn from our efforts over the past years, but we also present a few novel results. In the first part of this review, we begin with a pedagogical introduction to the real-time dynamics of a dissipative spin at both high and low temperatures. We then focus on the driven dynamics in the quantum regime beyond the limit of weak spin–bath coupling. In these situations, the non-perturbative stochastic Schrödinger equation method is ideally suited to numerically obtain the spin dynamics as it can incorporate bias fields hz(t) of arbitrary time-dependence in the Hamiltonian. We present different recent applications of this method: (i) how topological properties of the spin such as the Berry curvature and the Chern number can be measured dynamically, and how dissipation affects the topology and the measurement protocol, (ii) how quantum spin chains can experience synchronization dynamics via coupling with a common bath. In the second part of this review, we discuss quantum engineering of spin–boson and related models in circuit quantum electrodynamics (cQED), quantum electrical circuits, and cold-atoms architectures. In different realizations, the Ohmic environment can be represented by a long (microwave) transmission line, a Luttinger liquid, a one-dimensional Bose–Einstein condensate or a chain of superconducting Josephson junctions. We show that the quantum impurity can be used as a quantum sensor to detect properties of a bath at minimal coupling, and how dissipative spin dynamics can lead to new insight in the Mott–superfluid transition.  相似文献   

11.
Weighted evolving networks: coupling topology and weight dynamics   总被引:6,自引:0,他引:6  
We propose a model for the growth of weighted networks that couples the establishment of new edges and vertices and the weights' dynamical evolution. The model is based on a simple weight-driven dynamics and generates networks exhibiting the statistical properties observed in several real-world systems. In particular, the model yields a nontrivial time evolution of vertices' properties and scale-free behavior for the weight, strength, and degree distributions.  相似文献   

12.
《Physics letters. [Part B]》1999,461(3):183-188
We analyze classical and quantum dynamics of a relativistic particle in 2d spacetimes with constant curvature. We show that global symmetries of spacetime specify the symmetries of physical phase-space and the corresponding quantum theory. To quantize the systems we parametrize the physical phase-space by canonical coordinates. Canonical quantization leads to unitary irreducible representations of SO(2.1) group.  相似文献   

13.
General dynamics of topology and traffic on weighted technological networks   总被引:2,自引:0,他引:2  
For most technical networks, the interplay of dynamics, traffic, and topology is assumed crucial to their evolution. In this Letter, we propose a traffic-driven evolution model of weighted technological networks. By introducing a general strength-coupling mechanism under which the traffic and topology mutually interact, the model gives power-law distributions of degree, weight, and strength, as confirmed in many real networks. Particularly, depending on a parameter W that controls the total weight growth of the system, the nontrivial clustering coefficient C, degree assortativity coefficient r, and degree-strength correlation are all consistent with empirical evidence.  相似文献   

14.
In this work we analyze, for the Hamiltonian Mean Field model, the relationship between the existence of quasi-stationary long-standing trajectories and the topology of the potential energy, following the ideas recently introduced in the literature [CITE]. In particular, we study the way topology alters the distribution of momenta along the trajectories as well asthe long-time behavior of the system.  相似文献   

15.
Interplay between topology and dynamics in the World Trade Web   总被引:1,自引:0,他引:1  
We present an empirical analysis of the network formed by the trade relationships between all world countries, or World Trade Web (WTW). Each (directed) link is weighted by the amount of wealth flowing between two countries, and each country is characterized by the value of its Gross Domestic Product (GDP). By analysing a set of year-by-year data covering the time interval 1950–2000, we show that the dynamics of all GDP values and the evolution of the WTW (trade flow and topology) are tightly coupled. The probability that two countries are connected depends on their GDP values, supporting recent theoretical models relating network topology to the presence of a `hidden' variable (or fitness). On the other hand, the topology is shown to determine the GDP values due to the exchange between countries. This leads us to a new framework where the fitness value is a dynamical variable determining, and at the same time depending on, network topology in a continuous feedback.  相似文献   

16.
The curvature field is measured from tracer-particle trajectories in a two-dimensional fluid flow that exhibits spatiotemporal chaos and is used to extract the hyperbolic and elliptic points of the flow. These special points are pinned to the forcing when the driving is weak, but wander over the domain and interact in pairs at stronger driving, changing the local topology of the flow. Their behavior reveals a two-stage transition to spatiotemporal chaos: a gradual loss of spatial and temporal order followed by an abrupt onset of topological changes.  相似文献   

17.
The problem of escape from a domain of attraction is applied to the case of discrete dynamical systems possessing stable and unstable fixed points. In the presence of noise, the otherwise stable fixed point of a nonlinear map becomes metastable, due to noise-induced hopping events, which eventually pass the unstable fixed point. Exact integral equations for the moments of the first passage time variable are derived, as well as an upper bound for the first moment. In the limit of weak noise, the integral equation for the first moment, i.e., the mean first passage time (MFPT), is treated, both numerically and analytically. The exponential leading part of the MFPT is given by the ratio of the noise-induced invariant probability at the stable fixed point and unstable fixed point, respectively. The evaluation of the prefactor is more subtle: It is characterized by a jump at the exit boundaries, which is the result of a discontinuous boundary layer function obeying an inhomogeneous integral equation. The jump at the boundary is shown to be always less than one-half of the maximum value of the MFPT. On the basis of a clear-cut separation of time scales, the MFPT is related to the escape rate to leave the domain of attraction and other transport coefficients, such as the diffusion coefficient. Alternatively, the rate can also be obtained if one evaluates the current-carrying flux that results if particles are continuously injected into the domain of attraction and captured beyond the exit boundaries. The two methods are shown to yield identical results for the escape rate of the weak noise result for the MFPT, respectively. As a byproduct of this study, we obtain general analytic expressions for the invariant probability of noisy maps with a small amount of nonlinearity.  相似文献   

18.
19.
This paper contains a case study of the escape factor for a source decaying radiatively. The calculation (by Holstein, Phelps and others) of the escape factor g for decay in the lowest eigenmode is reviewed, for sources of both low and high opacity. The comparison of theory with experiment is discussed. The application of g when deducing the spontaneous transition probability is examined, with particular reference to certain experiments of Klose which have here been reanalysed.  相似文献   

20.
Ling-Yun Chiao 《Physica A》2012,391(3):497-507
Reduction in the scaling exponent of the frequency-magnitude power law of regional seismic activity as a precursor to sizable earthquakes has been widely documented and debated. Recently, postulation based on a modified sand-pile model has been proposed as a plausible explanation. The model demonstrates systematic variations in the frequency-size scaling exponent of avalanches through the introduction of varying degrees of randomness to the conventional regular, nearest-neighbor network connection. In this study, we examined a connection network of successive events in the Taiwan seismicity, in an attempt to shed lights on the behavior of the actual earthquake network. The revealed nature of connection is indeed quite different from the nearest-neighbor interaction usually presumed in most conventional seismicity modeling. However, monthly variations in the statistics of the connection degree, the connection time and the connection distance that reflect important transition dynamics of the regional seismicity network, are inconsistent with the postulation based on the modified sand-pile model that attributes the scaling exponent variation to the varying degree of long range connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号