首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new technique of dual-beam laser ablation of fused silica by multiwavelength excitation process using a 248-nm KrF excimer laser (ablation beam) coupled with a 157-nm F2 laser (excitation beam) in dry nitrogen atmosphere is reported. The dual-beam laser ablation greatly reduced debris deposition and, thus, significantly improved the ablation quality compared with single-beam ablation of the KrF laser. High-quality ablation can be achieved at the delay times of KrF excimer laser irradiation shorter than 10 ns due to a large excited-state absorption. The ablation rate can reach up to 80 nm/pulse at the fluence of 4.0 J/cm2 for the 248-nm laser and 60 mJ/cm2 for the F2 laser. The ablation threshold and effective absorption coefficient of KrF excimer laser are estimated to be 1.4 J/cm2 and 1.2᎒5 cm-1, respectively.  相似文献   

2.
Absorptance losses in MgF2, CaF2 and BaF2 during 193-nm (DUV) and 157-nm (VUV) irradiation are investigated by employing a high-resolution laser calorimetric technique which allows the determination of both single- and two-photon absorptance at energy densities up to 110 mJ/cm2. A strong wavelength dependence of the DUV and VUV absorption characteristics is observed: while effective two-photon absorption takes place at 193 nm, either no similar effect at all (in the case of BaF2) or only a very minor effect (CaF2) is observed at 157 nm. A first explanation for this absorption behaviour is given, implying the energetic band structure of CaF2. In addition it is shown that, due to the strong nonlinear dependency, above a critical energy density the absorptance at 193 nm can exceed the absorptance at 157 nm. Furthermore, different single- and two-photon absorption coefficients are determined for different CaF2 samples at 193 nm, indicating a two-step absorption mechanism. In addition, laser-induced aging is found in a MgF2 sample at 193 nm, but not at 157 nm. Received: 21 June 2001 / Revised version: 2 November 2001 / Published online: 7 February 2002  相似文献   

3.
A collinear irradiation system of F2 and KrF excimer lasers for high-quality and high-efficiency ablation of hard materials by the F2 and KrF excimer lasers’ multi-wavelength excitation process has been developed. This system achieves well-defined micropatterning of fused silica with little thermal influence and little debris deposition. In addition, the dependence of ablation rate on various conditions such as laser fluence, irradiation timing of each laser beam, and pulse number is examined to investigate the role of the F2 laser in this process. The multi-wavelength excitation effect is strongly affected by the irradiation timing, and an extremely high ablation rate of over 30 nm/pulse is obtained between -10 ns and 10 ns of the delay time of F2 laser irradiation. The KrF excimer laser ablation threshold decreases and its effective absorption coefficient increases with increasing F2 laser fluence. Moreover, the ablation rate shows a linear increase with the logarithm of KrF excimer laser fluence when the F2 laser is simultaneously irradiated, while single KrF excimer laser ablation shows a nonlinear increase. The ablation mechanism is discussed based on these results. Received: 16 July 2001 / Accepted: 27 July 2001 / Published online: 2 October 2001  相似文献   

4.
Submicron surface-relief gratings were fabricated on fused silica by F2-laser ablation with nanosecond duration pulses from a high-resolution 157-nm optical processing system. A 157 nm wavelength projection mask was prepared by ArF-laser ablation to form a 20-μm period grating of equal lines and spaces. A 25-fold demagnification of the mask by a Schwarzschild objective generated gratings of an 830-nm period and a 250 nm modulation depth, as characterized by SEM, AFM and HeNe-laser beam diffraction. Received: 24 April 2002 / Accepted: 25 April 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +49-551/503 599, E-mail: jihle@llg.gwdg.de  相似文献   

5.
Masks for laser processing are generated by laser ablation patterning of dielectric layer systems. The application of these masks for the rapid fabrication of diffractive optical elements (DOEs) is presented. The diffractive optical elements are designed as phase-only elements, assuming an illumination with a plane wave. A continuous phase function is calculated using an iterative Fourier transform algorithm (IFTA). This continuous phase function is reduced to two or four levels by an iterative Fourier quantisation algorithm (IFQA) that is able to include focal power. The fabrication of the DOE is performed in a two-step process. First, a binary amplitude mask (or a set of masks for multi-level DOEs) is made by structured ablation of a highly reflective dielectric coating (HR 248 nm) from a fused silica substrate. This is accomplished by using an ArF excimer laser emitting at 193 nm, a wavelength that is sufficiently absorbed in the HfO2/SiO2-dielectric layer system, leading to precisely ablated mask structures. In the second step, this mask is used in a 4:1 projection configuration to generate a surface profile in a polymer substrate by ablation at 248 nm. The depth modulation can be defined by adjusting laser fluence and pulse number. Examples of DOEs ablated in polycarbonate are shown and their performance is characterised.  相似文献   

6.
By using an Ar^+ ion laser, a tunable Rh 6G dye laser (linewidth 0.5cm^-1) pumped by the second harmonic of a YAG:Nd laser and a Coherent 899-21 dye laser as light sources and using a monochromator, a phase-locking amplifier and a computer as the data detecting system, we detect the optical properties of Eu^3+-doped Y2SiO5 crystal. Persistent ,spectral hole burning (PSHB) are observed in the Eu^3+ ions spectral lines (^5 Do-T Fo transition) in the crystal at the temperature of 16K. For 15mW dye laser burning the crystal for 0.1 s spectral holes with hole width about 80 MHz both at 579.62nm and at 579.82nm are detected and the holes can remain for a long time, more than 10h.  相似文献   

7.
Spatially defined patterning of multi-layer dielectric optical systems by laser-induced ablation is demonstrated. A 49-layer high-reflectivity mirror for 193-nm light was irradiated with F2-laser light through the CaF2-substrate to cleanly remove the whole dielectric stack by rear-sided ablation. The 157-nm light is absorbed efficiently by dielectric layers such as SiO2 and Al2O3 that are typically used for ultraviolet (UV) transmission at 193-nm and longer wavelengths. Thus it is possible to ablate highly reflective UV-laser mirrors (HR 193 nm) and to create dielectric masks that withstand high power levels at 193 nm. A single 157-nm pulse with a fluence of less than 500 mJ/cm2 is sufficient to cleanly ablate the whole layer stack with sharp edges and without debris deposition. Received: 31 October 2000 / Accepted: 14 November 2000 / Published online: 10 January 2001  相似文献   

8.
We examine laser-induced ion and neutral emissions from single-crystal CaHPO4·2 H2O (brushite), a wide-band-gap, hydrated inorganic single crystal, with 248-nm excimer laser radiation. Both laser-induced ion and neutral emissions are several orders of magnitude higher following exposure to 2 keV electrons at current densities of 200 7A/cm2 and doses of 1 C/cm2. In addition to intense Ca+ signals, electron-irradiated surfaces yield substantial CaO+, PO+, and P+ signals. As-grown and as-cleaved brushite show only weak neutral O2 and Ca emissions, whereas electron-irradiated surfaces yield enhanced O2, Ca, PO, PO2, and P emissions. Electron irradiation (i) significantly heats the sample, leading to thermal dehydration (CaHPO4 formation) and pyrolysis (Ca2P2O7 formation) and (ii) chemically reduces the surface via electron stimulated desorption. The thermal effects are accompanied by morphological changes, including recrystallization. Although complex, these changes lead to high defect densities, which are responsible for the dramatic enhancements in the observed laser desorption.  相似文献   

9.
We report thin tantalum pentoxide (Ta2O5) films grown on quartz and silicon substrates by the pulsed laser deposition (PLD) technique employing a Nd:YAG laser (wavelength 5=532 nm) in various O2 gas environments. The effect of oxygen pressure, substrate temperature, and annealing under UV irradiation using a 172-nm excimer lamp on the properties of the grown films has been studied. The optical properties determined by UV spectrophotometry were also found to be a sensitive function of oxygen pressure in the chamber. At an O2 pressure of 0.2 mbar and deposition temperatures between 400 and 500 °C, the refractive index of the films was around 2.18 which is very close to the bulk Ta2O5 value of 2.2, and an optical transmittance around 90% in the visible region of the spectrum was obtained. X-ray diffraction measurements showed that the as-deposited films were amorphous at temperatures below 500 °C and possessed an orthorhombic (#-Ta2O5) crystal structure at temperatures above 600 °C. The most significant result of the present study was that oxygen pressure could be used to control the composition and modulate optical band gap of the films. It was also found that UV annealing can significantly improve the optical and electrical properties of the films deposited at low oxygen pressures (<0.1 mbar).  相似文献   

10.
We present a high power and efficient operation of the ^4F3/2 → ^4I9/2 transition in Nd:GdVO4 at 912nm. In the cw mode, the maximum output power of 8.6 W is achieved when the incident pump power is 40.3 W, leading to a slope efficiency of 33.3% and an optical-optical efficiency of 21.3%. To the best of our knowledge, this is the highest cw laser power at 912nm obtained with the conventional Nd:GdVO4 crystal. Pulsed operation of 912nm laser has also been realized by inserting a small aeousto-optie (A-O) Q-Switch inside the resonator. As a result, the minimal pulse width of 20ns and the average laser power 1.43 W at the repetition rate of lOkHz are obtained, corresponding to 7.1 kW peak power. We believe that this is the highest laser peak power at 912nm. Furthermore, duration of 65ns has also been acquired when the repetition rate is 100 kHz.  相似文献   

11.
We report that a deep ultraviolet (DUV) laser from the sixth harmonic of a 1064nm laser has been firstly used as light source in an ultrahigh energy-resolution angle-resolved photoemission spectroscopy (ARPES). The wavelength is 177.3nm obtained by using the second harmonic KBe2BO3F2 crystal with a frequency tripled 1064nm Nd:YVO4 laser. The large flux (10^14 - 10^15 photons/s) and narrow line width (0.26 meV) are suitable for the ultrahigh-energy resolution ARPES. The laser-ARPES can be a powerful tool to study the electronic structure at and near the Fermi level of the superconductor and correlated materials. The laser-ARPES has worked more than 500 h already.  相似文献   

12.
Optical emission from the photolytic dissociation of ferrocene Fe(C5H5)2, often abbreviated as FeCp2, in argon atmosphere was studied. The dissociation was performed by using an ArF excimer laser, operating at a wavelength of 193 nm. Two pressure regions were examined. At low (0.1 mbar) pressure, several emission lines of Fe could be identified, however no C, C2, or CH emission lines/bands were found. At a higher (20 mbar) pressure of the FeCp2/Ar gas mixture, a broadband emission identified as blackbody radiation was observed. This blackbody radiation originates from nanoparticles with a mean size of 30 nm, which consist of both metallic iron and amorphous carbon. The initial colour temperature of the particles was 2600 K.  相似文献   

13.
High resolution atomic force microscopy images of immobilized Ulocladium sp cultures on silicon wafers reveal the cessation of biological activity after laser illumination at 157 nm. Laser light dissociates the external multilayered proteinaceous membrane of the spores, reducing their thickness to a critical value prior to cell explosion due to the high internal pressure of the nucleus. The population of a monolayer culture was successfully destroyed following illumination with 150 laser pulses at the fluence of 1 mJ/cm2 per pulse. A thin layer of 0.3 nm was removed on the average from the external membrane per pulse, and a thin layer of 45 nm had to be removed from the external membrane before cell explosion. Thus, the use of a 157-nm laser is an effective and controllable method for stopping biological activity of Ulocladium sp spores in artifacts. This finding supports previous results of using 157-nm lasers against foxing in historic paper preservation. PACS 87.50.Gi; 87.50.Hj; 87.64.-t; 87.16.Gj  相似文献   

14.
The quasi-three-level 908-nm continuous-wave laser emission under direct diode laser pumping at 880 nm into emitting level 4 F 3/2 of Nd:YLF have been demonstrated. An end-pumped Nd:YLF crystal yielded 4.7 W of output power for 11.8 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 43.3%. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880-nm wavelength pumping.  相似文献   

15.
We report on the mass spectroscopic and the laser ablative characteristics of nylon 6.6 [-NH-(CH2)6-NH-CO-(-CH2)4-CO-] at 193 and 248 nm, using the ArF and KrF excimer lasers. The characteristic parameters of the laser ablative process, such as etch rate at different fluences, the threshold fluence, and the absorption coefficient for both wavelengths were determined. Even at low laser energy, there was a complete breaking of the polymeric chain bonds. The following photofragments were observed at 248 nm: H, H2, C, CH, CH2, N, NH, O, OH, H2O, C2H, C2H2, CN, C2H3, HCN, N2, CO, C2H4, COH, C2H5, N2H, NO, C2H6, H2CO, N2H2, C2, CH2NH, O2, C3H3, C3H4, C3H5, C3H6, CNO, HCNO, and H2CNO. At 193 nm no photofragments were observed for m/e larger than 30 amu. The photofragments with two carbon atoms have a relatively higher probability to be dissociated from the parent monomer, than heavier photofragments with four carbon atoms. The mass spectroscopic studies and the absorption spectrum of nylon 6.6 in the ultraviolet, suggest photochemical bond-breaking at 248 and 193 nm. The monomer dissociates into fragments with the predominant mass at 28 amu for both laser wavelengths. Therefore the amide group is mainly involved in the photodissociation process of nylon 6.6 in the ultraviolet. The experimental results suggest that the photochemical dissociation of the polymeric chain is the dominant mechanism of the laser ablation of nylon 6.6 at 193 and 248 nm.  相似文献   

16.
The simple and efficient fiber delivery of 5-ns pulses from a XeCl excimer laser operating at a wavelength of 308 nm is demonstrated. The coupling scheme uses all of the output energy of the XeCl excimer laser and benefits from a simple and easy-to-adjust fiber coupling. Experiments on the 308-nm fiber delivery for more than 2.5 million laser pulses of 8-ns pulse width (FWHM) and up to 8-mJ stabilized pulse energy are performed. The long-time pulsed UV laser transmission is found to be different for individual samples of optical fibers that perform very similarly in low-intensity UV light applications. For applications with strict demands on the long-time stability, a critical evaluation of the fiber performance with the 308-nm laser under operating conditions is necessary. Measurements between 1 and 200 Hz show a negligible dependence of the fiber delivery performance on the repetition rate of the transmitted laser pulses. PACS 42.55.Lt; 42.81.Cn; 07.69.Vg  相似文献   

17.
用157 nm激光制作的光子晶体光纤法布里-珀罗传感器   总被引:6,自引:2,他引:4  
157nm准分子激光用于微加工具有单光子能量高,峰值功率高,材料吸收系数高,分辨率高等优点。利用157nm激光微加工的方法,在光子晶体光纤上融切出微小矩形孔,从而构成腔长为45.6μm的微光纤法布里-珀罗干涉腔,得到的干涉条纹平滑,衬比度约为26dB,并从激光与石英材料的相互作用上分析了形成较好干涉条纹的原因。把这种微腔应用于应变测量,在550μm范围内,腔长增量相对于应变的灵敏度为0.32nm/μm,线形度达0.9994。实验证明该微腔对温度不敏感,800℃范围内腔长变化仅20nm。157nm准分子激光加工光纤法布里-珀罗腔方法简单,一次成型,具有较高的加工效率和精度,有望实现光纤法布里-珀罗腔的规模化批量制造,具有较好的应用前景。  相似文献   

18.
The deposition of Al2O3 thin films by pulsed KrF excimer laser radiation (248 nm) on fused silica substrates is investigated as a function of the processing variables: laser fluence, processing gas pressure and target-to-substrate distance. The kinetic energy of the Al species in the laser-generated plasma, as measured by time-of-flight optical emission spectroscopy and time-of-flight quadrupole mass spectrometry, is described as a function of the type and pressure of the processing gas, the distance from target, and the laser fluence. The influence of the kinetic energy of the film-forming particles on the density and the refractive index of the resulting films, determined by ellipsometry, is investigated. The densification of the Al2O3 thin films to 94% of the bulk value is achieved by film-forming Al particles impinging on the growing surface with mean kinetic energies of about 25 eV.  相似文献   

19.
In this paper it is shown that to achieve a maximum efficiency and high output energy of an ArF (193 nm) excimer laser, one should use optimal pump intensity. It has been shown experimentally that the optimal pump intensity for an ArF excimer laser with the mixture of He:Ar:F2 has a value of 4.5–5.0 MW/cm3. The results of an experimental study of the pump and active medium parameters effect on the efficiency and output energy of the ArF excimer laser on the mixture of He:Ar:F2 are presented. To provide high pump intensity of an active medium, the excitation scheme of the LC-inverter type has been used where the current return conductor inductance had been increased from 30 to 80 nH. This allows the pump to achieve levels of intensity above 5.0 MW/cm3. By using the pump intensity of 5.0 MW/cm3 in an active medium of He:Ar:F2–79.7:20:0.3 at total pressure of 2.4 atm, we are the first to obtain the output energy of 1.3 J at the total efficiency of 2.0%. The pulse duration (FWHM) was 15±1 ns and the peak pulse power was 85 MW. PACS 42.55.Lt; 42.60.Lh  相似文献   

20.
This paper reports the controlled micromachining of 100 nm thick indium tin oxide (ITO) thin films on glass substrates with a vacuum-ultraviolet 157 nm F2 laser. Partial to complete film removal was observed over a wide fluence window from 0.49 J/cm2 to an optimized single pulse fluence of 4.5 J/cm2 for complete film removal. Optical microscopy, atomic force microscopy, and energy dispersive X-ray analysis show little substrate or collateral damage by the laser pulse which conserved the stoichiometry, optical transparency and electrical conductivity of ITO coating adjacent to the trenches. At higher fluence, a parallel micron sized channel can be etched in the glass substrate. The high photon energy and top-hat beam homogenized optical system of the F2 laser opens new means for direct structuring of electrodes and microchannels in biological microfluidic systems or in optoelectronics. PACS 79.20.Ds; 42.62.Cf; 42.55.Lc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号